Объемные треугольники в геометрии

Геометрические объемные фигуры и их названия: шар, куб, пирамида, призма, тетраэдр

Объемные треугольники в геометрии

Геометрические объемные фигуры — это твердые тела, которые занимают ненулевой объем в евклидовом (трехмерном) пространстве. Эти фигуры изучает раздел математики, который носит название «пространственная геометрия». Знания о свойствах объемных фигур применяются в инженерии и в науках о природе. Рассмотрим в статье вопрос, геометрические объемные фигуры и их названия.

Видео:Геометрия 7 класс (Урок№9 - Треугольник.)Скачать

Геометрия 7 класс (Урок№9 - Треугольник.)

Геометрические объемные тела

Поскольку эти тела имеют конечную размерность в трех пространственных направлениях, то для их описания в геометрии используют систему из трех координатных осей. Эти оси обладают следующими свойствами:

  1. Они ортогональны друг другу, то есть перпендикулярны.
  2. Эти оси нормализированы, то есть базисные вектора каждой оси имеют одинаковую длину.
  3. Любая из осей координат — это результат векторного произведения двух других.

Говоря о геометрических объемных фигурах и их названиях, следует отметить, что все они принадлежат к одному из 2-х больших классов:

  1. Класс полиэдров. Эти фигуры, исходя из названия класса, имеют прямые ребра и плоские грани. Грань — это плоскость, которая ограничивает фигуру. Место соединения двух граней называется ребром, а точка соединения трех граней — это вершина. К полиэдрам относятся геометрическая фигура куб, тетраэдры, призмы, пирамиды. Для этих фигур справедлива теорема Эйлера, которая устанавливает связь между числом сторон (С), ребер (Р) и вершин (В) для каждого полиэдра. Математически эта теорема записывается так: С + В = Р + 2.
  2. Класс круглых тел или тел вращения. Эти фигуры имеют хотя бы одну поверхность, образующую их, изогнутой формы. Например, шар, конус, цилиндр, тор.

Что касается свойств объемных фигур, то следует выделить два самых важных из них:

  1. Наличие определенного объема, который фигура занимает в пространстве.
  2. Наличие у каждой объемной фигуры площади поверхности.

Оба свойства для каждой фигуры описываются конкретными математическими формулами.

Рассмотрим ниже самые простые геометрические объемные фигуры и их названия: куб, пирамиду, призму, тетраэдр и шар.

Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnline

Фигура куб: описание

Объемные треугольники в геометрии

Под геометрической фигурой куб понимают объемное тело, которое образовано 6-тью квадратными плоскостями или поверхностями. Также эту фигуру называют правильный гексаэдр, поскольку она имеет 6 сторон, или прямоугольный параллелепипед, так как он состоит из 3-х пар параллельных сторон, которые взаимно перпендикулярны друг другу. Называют куб и прямоугольной призмой, у которой основание является квадратом, а высота равна стороне основания.

Поскольку куб является многогранником или полиэдром, то для него можно применить теорему Эйлера, чтобы определить число его ребер. Зная, что число сторон равно 6, а вершин у куба 8, число ребер равно: Р = С + В — 2 = 6 + 8 — 2 = 12.

Если обозначить буквой «a» длину стороны куба, тогда формулы для его объема и площади поверхности будут иметь вид: V = a 3 и S = 6*a 2 , соответственно.

Видео:КАК СДЕЛАТЬ ШЕСТИУГОЛЬНУЮ ПИРАМИДУ ИЗ БУМАГИ? ШЕСТИУГОЛЬНАЯ ПИРАМИДА. ОБЪЕМНЫЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫСкачать

КАК СДЕЛАТЬ ШЕСТИУГОЛЬНУЮ ПИРАМИДУ ИЗ БУМАГИ? ШЕСТИУГОЛЬНАЯ ПИРАМИДА. ОБЪЕМНЫЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ

Фигура пирамида

Объемные треугольники в геометрии

Пирамида — это полиэдр, который состоит из простого многогранника (основание пирамиды) и треугольников, которые соединяются с основанием и имеют одну общую вершину (вершина пирамиды). Треугольники называются боковыми гранями пирамиды.

Геометрические характеристики пирамиды зависят от того, какой многоугольник лежит в ее основании, а также от того, является ли пирамида прямой или косой. Под прямой пирамидой понимают такую пирамиду, для которой перпендикулярная основанию прямая, проведенная через вершину пирамиды, пересекает основание в ее геометрическом центре.

Одной из простых пирамид является четырехугольная прямая пирамида, в основании которой лежит квадрат со стороной «a», высота этой пирамиды «h». Для этой фигуры пирамиды объем и площадь поверхности будут равны: V = a 2 *h/3 и S = 2*a*√(h 2 +a 2 /4) + a 2 , соответственно. Применяя теорему Эйлера для нее, с учетом того, что число граней равно 5, и число вершин равно 5, получаем количество ребер: Р = 5 + 5 — 2 = 8.

Видео:Как сделать объемную ТРЕУГОЛЬНУЮ ПРИЗМУ из бумаги А4? / Объемные геометрические фигуры своими рукамиСкачать

Как сделать объемную ТРЕУГОЛЬНУЮ ПРИЗМУ из бумаги А4? / Объемные геометрические фигуры своими руками

Фигура тетраэдр: описание

Объемные треугольники в геометрии

Под геометрической фигурой тетраэдр понимают объемное тело, образованное 4-мя гранями. Исходя из свойств пространства, такие грани могут представлять только треугольники. Таким образом, тетраэдр является частным случаем пирамиды, у которой в основании лежит треугольник.

Если все 4-ре треугольника, образующие грани тетраэдра, являются равносторонними и равными между собой, то такой тетраэдр называется правильным. Этот тетраэдр имеет 4 грани и 4 вершины, число ребер составляет 4 + 4 — 2 = 6. Применяя стандартные формулы из плоской геометрии для рассматриваемой фигуры, получаем: V = a 3 * √2/12 и S = √3*a 2 , где a — длина стороны равностороннего треугольника.

Интересно отметить, что в природе некоторые молекулы имеют форму правильного тетраэдра. Например, молекула метана CH4, в которой атомы водорода расположены в вершинах тетраэдра, и соединены с атомом углерода ковалентными химическими связями. Атом углерода находится в геометрическом центре тетраэдра.

Простая в изготовлении форма фигуры тетраэдр используется также в инженерии. Например, тетраэдрическую форму используют при изготовлении якорей для кораблей. Отметим, что космический зонд НАСА, Mars Pathfinder, который совершил посадку на поверхность Марса 4 июля 1997 года, также имел форму тетраэдра.

Видео:Учим плоские геометрические фигуры с паровозиком Чух-Чухом - часть первая (1). Геометрия для детейСкачать

Учим плоские геометрические фигуры с паровозиком Чух-Чухом - часть первая (1). Геометрия для детей

Фигура призма

Объемные треугольники в геометрии

Эту геометрическую фигуру можно получить, если взять два многогранника, расположить их параллельно друг другу в разных плоскостях пространства, и соединить их вершины соответствующим образом между собой. В итоге получится призма, два многогранника называются ее основаниями, а поверхности, соединяющие эти многогранники, будут иметь форму параллелограммов. Призма называется прямой, если ее боковые стороны (параллелограммы) являются прямоугольниками.

Призма — это полиэдр, поэтому для нее верна теорема Эйлера. Например, если в основании призмы лежит шестиугольник, тогда, количество сторон у призмы равно 8, а количество вершин — 12. Число ребер будет равно: Р = 8 + 12 — 2 = 18. Для прямой призмы высотой h, в основании которой лежит правильный шестиугольник со стороной a, объем равен: V = a 2 *h*√3/4, площадь поверхности равна: S = 3*a*(a*√3 + 2*h).

Видео:Треугольники. 7 класс.Скачать

Треугольники. 7 класс.

Фигура шар

Объемные треугольники в геометрии

Говоря о простых геометрических объемных фигурах и их названиях, следует упомянуть шар. Под объемным телом под названием шар понимают тело, которое ограничено сферой. В свою очередь, сфера — это совокупность точек пространства, равноудаленных от одной точки, которая называется центром сферы.

Поскольку шар относится к классу круглых тел, то для него не существует понятия о сторонах, ребрах и вершинах. Площадь поверхности сферы, ограничивающей шар, находится по формуле: S = 4*pi*r 2 , а объем шара можно вычислить по формуле: V = 4*pi*r 3 /3, где pi — число пи (3,14), r — радиус сферы (шара).

Видео:Развертка тетраэдра - это легко! Как сделать объёмную правильную треугольную пирамиду из бумаги?Скачать

Развертка тетраэдра - это легко! Как сделать объёмную правильную треугольную пирамиду из бумаги?

Треугольник объемный название

Видео:7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Названия геометрических фигур в картинках (23 ФОТО)

Геометрия как наука началась с древних греков. Они подстмотрели у египтян землемерные работы и оформили это в виде аксиом и правил. Первым научным трудом в этой области был «Начала» Евклида.

Объемные треугольники в геометрии

Объёмные геометрические фигуры

Объемные треугольники в геометрии

Объемные треугольники в геометрии

Названия объёмных фигур на английском

Объемные треугольники в геометрии

Синие фигуры с английскими названиями

Объемные треугольники в геометрии

Синие фигуры с русскими названиями

Объемные треугольники в геометрии

Разноцветные фигуры с английскими названиями

Объемные треугольники в геометрии

Простые фигуры кубической сингонии

Объемные треугольники в геометрии

Куб, икосаэдр, тетраэдр, октаэдр, додекаэдр

Объемные треугольники в геометрии

Весёлые геометрические фигуры

Объемные треугольники в геометрии

Объемные треугольники в геометрии

Объемные треугольники в геометрии

Треугольник, пятиугольник, шестиугольник, семиугольник, восьмиугольник

Объемные треугольники в геометрии

Объемные треугольники в геометрии

Объемные треугольники в геометрии

Объемные треугольники в геометрии

Объемные треугольники в геометрии

Объемные треугольники в геометрии

Объемные треугольники в геометрии

Объемные треугольники в геометрии

Объемные треугольники в геометрии

Объемные треугольники в геометрии

Объемные треугольники в геометрии

Видео:Объемные Геометрические ФИГУРЫ Загадки для ДЕТЕЙСкачать

Объемные Геометрические ФИГУРЫ Загадки для ДЕТЕЙ

Какие бывают геометрические фигуры?

Какие бывают геометрические фигуры?

В сферу изучения науки геометрии входят плоские (двухмерные) фигуры и объмные фигуры (трхмерные).

Их изучает планиметрия. Точка тоже плоская фигура.

Из объмных известны:

Их изучает стереометрия.

Двухмерные фигуры — треугольник, квадрат, прямоугольник, ромб, трапеция, параллелограмм, круг, овал, эллипс, многоугольники (пентагон, гексагон, гептагон, октагон и другие).

К фигурам также относится и точка.

Трехмерные фигуры — куб, сфера, полусфера, конус, цилиндр, пирамида, параллелепипед, призма, эллипсоид, купол, тетраэдры и множество других, выходящие из вышеуказанных. Далее идут очень сложные геометрические фигуры — различные многогранники, которые по сути могут содержать бесконечное количество граней. Например, большая клинокорона — состоит из 2-х квадратов и 16-ти правильных треугольников или клинокорона, составленная из 14 граней: 2 квадрата и 12 правильных треугольника.

Говоря о геометрических фигурах, можно выделить такие две закономерные группы как:

1) Двухмерные фигуры;

2) И трхмерные фигуры.

Итак, поподробнее о двухмерным, к ним можно отнести такие фигуры как:

А вот что касается трхмерных фигур, то вот какими они могут быть:

Очертания фигур и все возможные действия с ними изучают математические науки геометрия (изучает плоские фигуры) и стереометрия (предмет изучения — объемные фигуры). Я в школе любила и ту, и другую науку.

Вот так классифицируются плоские (2D) фигуры:

С тремя сторонами — это треугольник. С четырьмя сторонами — это квадрат, ромб, прямоугольник, трапеция. А еще может быть параллелограмм и окружность (овал, круг, полукруг, эллипс).

Объемные фигуры (3D) классифицируются таким образом:

Это куб, параллелепипед, тетраэдр, цилиндр, пирамида, икосаэдр, шар, додекаэдр, конус, октаэдр, призма, сфера. К тому же есть усеченные фигуры (пирамида, конус). В зависимости от основания, пирамида, призма делятся на треугольные, четырехгранные и так далее.

Детские игрушки (пирамидки, мозаика и другие) позволяют с раннего детства знакомить детей с геометрическими объемными фигурами. А плоские фигуры можно нарисовать и вырезать из бумаги.

Из двухмерных можно назвать следующие:

  • круг;
  • овал;
  • квадрат;
  • прямоугольник;
  • параллелограмм;
  • трапеция;
  • пятиугольник (шестиугольник и т.д.);
  • ромб;
  • треугольник.

С трехмерными немного посложнее:

  • куб;
  • цилиндр;
  • конус;
  • призма;
  • сфера или шар;
  • параллелепипед;
  • пирамида;
  • тетраэдр;
  • икосаэдр;
  • октаэдр;
  • додекаэдр.

Думаю многие, прочитав последния названия, спросили про себя: quot;Что-что?quot;. Для наглядности — иллюстрация:

На самом деле фигур в математике достаточно. Плоские фигуры это — прямоугольники, квадрат, треугольник, пятиугольник, шестиугольник, круг. Объемные фигуры или 3D фигуры — это как пирамида, так и куб и додекаэдр, и тд.

1 Из двухмерных фигур:

круг, треугольник, квадрат, ромб, прямоугольник, трапеция, параллелограмм, овал и многоугольник. Ещ звезда (пентаграмма), если е можно называть фигурой.

2 Из трхмерных фигур:

Призма, пирамида, параллелепипед, призма, шар (сфера), цилиндр, полусфера (половинка от сферы, то есть шар, разрезанный пополам) и конус. Пирамиды делятся на треугольные, четырхугольные и так далее (почти до бесконечности). Чем больше у пирамиды углов в основании, тем больше она напоминает конус.

Двухмерные фигуры (2D): угол; многоугольник (разновидности многоугольников: треугольник, четырхугольник разновидности четырхугольника: параллелограмм, прямоугольник, ромб, квадрат, трапеция, дельтоид, пятиугольник, шестиугольник и т. д. до бесконечности); окружность, круг, круговой сегмент, круговой сектор, эллипс, овал.

Трхмерные фигуры (3D): двугранный угол, многогранный угол; многогранник (разновидности многогранников: призма разновидности призмы: параллелепипед, куб, антипризма, пирамида разновидность тетраэдр, усечнная пирамида, бипирамида разновидность октаэдр, додекаэдр, икосаэдр, клин, обелиск); цилиндр, усечнный цилиндр, отрезок цилиндра (он же цилиндрическая подковка или quot;копытоquot;), конус, усечнный конус, сфера, шар, шаровой сегмент, шаровой слой, шаровой сектор, эллипсоид, геоид.

С самого начала мы на уроках геометрии изучаем простые фигуры, которые являются плоскими, то есть располагаются на одной плоскости.

Далее, перед нами открывается мир объмных фигур, которые необходимо представлять и понимать, как они расположены и как грамотно их нарисовать, чтобы было понятно не только вам, но и окружающим.

Итак, перечень основных фигур можно изучить ниже.

В последнее время мне как раз приходилось рассказывать своим внучкам и внуку, какими могут быть геометрические фигуры.

Начинали с плоских фигурок, вырезанных из картона или сделанные из пластмассы, дети учились различать треугольник и квадрат, овал и круг, прямоугольник, ромб и многоугольник.

Помогали в запоминании названий фигур и вот такие специальные игрушки с отверстиями определнной формы.

Позднее перешли на объмные фигурки, кубики и конусы, параллелепипеды, шары и кольца, пирамидки и цилиндры.

До школы они пока не доросли, а когда пойдут, то их научат различать равнобедренные и равносторонние треугольники, узнают про луч и точку, про окружность и вс остальное.

Видео:Неравенства треугольника. 7 класс.Скачать

Неравенства треугольника. 7 класс.

треугольник в объеме — Как называется объемный треугольник. Вот квадрат — кубом, а треугольник — ? — 22 ответа

В разделе Другое на вопрос Как называется объемный треугольник. Вот квадрат — кубом, а треугольник — ? заданный автором Дарья Попкова лучший ответ это Тетраэдр. Объемные треугольники в геометрии

[гуру]пирамидаОтвет от Евровидение[новичек]незнОтвет от Прострочить[новичек]хзОтвет от Обособиться[новичек]ПирамидаОтвет от Ёофья Раскопова[новичек]ПИРАМИДАААА!!

КАКОЙ НА ФИГ ТЭТРАЭДР.

Ответ от сергей беляев[новичек]Так-то у тетраэдра 4 угла, а у пирамиды их 5. Какой и них-зависит от кол-ва углов в основанииОтвет от Денис Рыбкин[активный]Пирамида или тетраэдр. Но гораздо чаще его называют пирамидойОтвет от Артур Татулян[новичек]Разница между пирамидой и тетраэдром в том, что у пирамиды четыре боковые грани в виде треугольников и нижняя грань в виде прямоугольника, а у тетраэдра три боковые грани в виде треугольников и нижняя грань в виде треугольника. По этому грамотнее будет, если сказать, что объемный треугольник — тетраэдр, так как все грани тэтраэдра в виде треугольников!Ответ от сафонов савелий[новичек]ПирамидаОтвет от Golubev Konstantin[новичек]Треугольная ПризмаОтвет от Любовь К[новичек]тэтраздерТреугольник на ВикипедииПосмотрите статью на википедии про ТреугольникТреугольник Рёло на ВикипедииПосмотрите статью на википедии про Треугольник Рёло

Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Виды треугольников

В зависимости от величин углов и соотношения длин сторон различают следующие виды треугольников.

Виды треугольников по углам:

  • остроугольные
  • прямоугольные
  • тупоугольные

Остроугольный треугольник — это треугольник, все углы которого острые (то есть градусная мера каждого угла меньше 90º).

Прямоугольный треугольник — это треугольник, у которого один угол прямой (то есть имеет градусную меру 90º).

Тупоугольный треугольник — это треугольник, у которого один угол — тупой (то есть имеет градусную меру больше 90º).

Виды треугольников по сторонам:

  • равносторонние
  • равнобедренные
  • разносторонние

Равносторонний треугольник (или правильный треугольник) — это треугольник, у которого все три стороны равны.

Равнобедренный треугольник — это треугольник, у которого две стороны равны.

Разносторонний треугольник — треугольник, все стороны которого имеют разную длину.

Если в задаче ничего не сказано о виде треугольника, его считают произвольным, то есть разносторонним.

Отрезки равной длины на чертеже отмечают равным количеством черточек:

Видео:Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать

Сумма углов треугольника. Геометрия 7 класс | Математика

Тетраэдр

Объемные треугольники в геометрии

Древние греки дали многограннику имя по числу граней. «Тетра» означает четыре, «хедра» — означает грань (тетраэдр – четырехгранник).

Видео:Пирамида из бумаги/Paper pyramid/DIYСкачать

Пирамида из бумаги/Paper pyramid/DIY

Поэтому на вопрос — «что такое тетраэдр?», можно дать следующее определение: » Тетраэдр это геометрическое тело из четырех граней, каждая их которых — правильный треугольник «.

Многогранник относится к правильным многогранникам и является одним из пяти Платоновых тел .

Тетраэдр имеет следующие характеристики:

  • Тип грани – правильный треугольник;
  • Число сторон у грани – 3;
  • Общее число граней – 4;
  • Число рёбер, примыкающих к вершине – 3;
  • Общее число вершин – 4;
  • Общее число рёбер – 6;

Правильный тетраэдр составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольников. Следовательно, сумма плоских углов при каждой вершине равна 180°.
Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии.

Является ли тетраэдр пирамидой? Да, тетраэдр это треугольная пирамида у которой все стороны равны.

Может ли пирамида быть тетраэдром? Только если это пирамида с треугольным основанием и каждая из её сторон равносторонний треугольник.

Отметим, что очень редко, но встречаются геометрические тела, составленные не из правильных треугольников, и их тоже называют тетраэдры, так как они имеют четыре грани.

Видео:Реши задачу по геометрии #shortsСкачать

Реши задачу по геометрии #shorts

Математические характеристики тетраэдра

Объемные треугольники в геометрии

Тетраэдр может быть помещен в сферу (вписан), так, что каждая из его вершин будет касаться внутренней стенки сферы.

Радиус описанной сферы тетраэдра определяется по формуле:

Объемные треугольники в геометрии

, где a — длина стороны.

Объемные треугольники в геометрии

Сфера может быть вписана внутрь тетраэдра.

Радиус вписанной сферы тетраэдра определяется по формуле:

Объемные треугольники в геометрии

Объемные треугольники в геометрии

Объемные треугольники в геометрии

Площадь поверхности тетраэдра

Для наглядности, площадь поверхности тетраэдра можно представить в виде площади развёртки. Площадь поверхности можно определить как площадь одной из сторон тетраэдра (это площадь правильного треугольника) умноженной на 4. Либо воспользоваться формулой: Объемные треугольники в геометрии

Объемные треугольники в геометрии

Объем тетраэдра определяется по следующей формуле:

Объемные треугольники в геометрии

Объемные треугольники в геометрии

Высота тетраэдра определяется по следующей формуле:

Объемные треугольники в геометрии

Расстояние до центра основания тетраэдра определяется по формуле:

Объемные треугольники в геометрии

Видео:ВСЕ ВИДЫ ТРЕУГОЛЬНИКОВ😉 #егэ #огэ #математика #профильныйегэ #shorts #геометрия #образованиеСкачать

ВСЕ ВИДЫ ТРЕУГОЛЬНИКОВ😉 #егэ #огэ #математика #профильныйегэ #shorts #геометрия #образование

Вариант развертки

Тетраэдр можно изготовить самостоятельно. Бумага или картон самый подходящий вариант. Для сборки потребуется бумажная развёртка — единая деталь с линиями сгибов.

Объемные треугольники в геометрии

Древнегреческий философ Платон ассоциировал тетраэдр с «земным» элементом огонь, поэтому для построения модели этого правильного многогранника мы выбрали красный цвет.

Объемные треугольники в геометрии

Заметим, что это не единственный вариант развертки.

Для построения модели Вы можете скачать развертку в формате pdf и распечатать на листе формата А4:
— если Вы предполагаете распечатать на цветном принтере — цветная развертка
— если Вы предполагаете использовать для сборки цветной картон — развертка

Видео:Икосаэдр из бумаги. Чертёж развертки икосаэдра.Скачать

Икосаэдр из бумаги. Чертёж развертки икосаэдра.

Видео. Тетраэдр из набора «Волшебные грани»

Объемные треугольники в геометрии

Объемные треугольники в геометрии

Вы можете изготовить модель тетраэдра воспользовавшись деталями для сборки из набора «Волшебные грани».

Сборка многогранника из набора:

Подробная сборка от Алексея Жигулева (youtube-канал PRO)

Подробная сборка от Алексея Жигулева (youtube-канал PRO)

вращение готового многогранника:

Видео:Как сделать ТРЕУГОЛЬНУЮ ПИРАМИДУ из бумаги? ||| Геометрические фигуры своими рукамиСкачать

Как сделать ТРЕУГОЛЬНУЮ ПИРАМИДУ из бумаги? ||| Геометрические фигуры своими руками

Видео. Вращение всех правильных многогранников

Популярное

Именем Древнегреческого ученого — Платона названа группа из пяти геометрических тел. Пять многогранников, которые математики называют — правильные, мы чаще всего в.

Это небольшая «шуточная» задача поможет Вам на некоторое время занять ваших детей! Какой пластиковый тетраэдр* нужно расплавить, чтобы из.

В микромире многогранники встречаются в виде молекул, вирусов и бактерий — простейших организмов. Например: фуллерены – шарообразные молекулы углерода С60 (рис.) — «кирпичики».

Подвесной потолочный светильник или по-простому — люстра, ещё никогда не был так близок к точным математическим формам.

Самая известная достопримечательность Казани и одновременно символ города — башня Сююмбике. Без нее невозможно представить Казань, так же как Париж без Эйфелевой башни, Лондон.

Визитная карточка Республики Беларусь — новое здание Национальной библиотеки в Минске. Проект нового здания был разработан еще в конце 80-х годов прошлого века и в 1989.

Архитектурные шедевры находятся в разных уголках земного шара и отражают особенности человеческой души. Тайные людские желания воплощаются в форме необыкновенных зданий. В.

📸 Видео

Учим объёмные геометрические фигуры с паровозиком Чух-Чухом - часть 1. Мультик для детейСкачать

Учим объёмные геометрические фигуры с паровозиком Чух-Чухом - часть 1. Мультик для детей

ОРИГАМИ ПИРАМИДА | Как сделать пирамиду из бумаги | Геометрические фигуры из бумагиСкачать

ОРИГАМИ ПИРАМИДА | Как сделать пирамиду из бумаги | Геометрические фигуры из бумаги

Геометрия 7 класс (Урок№10 - Первый признак равенства треугольников.)Скачать

Геометрия 7 класс (Урок№10 - Первый признак равенства треугольников.)
Поделиться или сохранить к себе: