Смотрите бесплатные видео-уроки на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
- Верные утверждения
Для того, чтобы найти нужное утверждение, воспользуйтесь поиском по сайту (вверху страницы) или сочетанием клавиш Ctrl+F.
Видео:Укажите неверное утверждение. Геометрия 8-9 класс. Свойства косинуса угла треугольника. Математика.Скачать
Задание 20 из ОГЭ. Анализ геометрических высказываний
В данном уроке мы вспомним различные определения, теоремы и свойства из курса геометрии. Очень многие девятиклассники допускают ошибки именно в 13 задании ОГЭ “Анализ геометрических высказываний”. Здесь мы рассмотрим различные утверждения, которые встречаются в ОГЭ и разберём, какие из них являются верными, а какие нет и почему.
Для удобства, утверждения расклассифицированы по темам: Аксиомы, Углы, Треугольники, Четырехугольники, Окружности, Симметрия.
Объем утверждений достаточно большой, но есть хорошая новость: если с первого раза вы с утверждением согласны, если для вас оно очевидно, то зубрить его не надо. Стоит серьёзно отнестись к утверждениям, которые с первого раза очевидными не кажутся. Но и их зазубривать тоже не нужно, их надо осмыслить, понять. Сделайте картинку к такому утверждению, подумайте, почему оно верно (или неверно).
Зубрёжка – бесполезное занятие. Любое утверждение можно сформулировать по-разному, поэтому самое главное – это понимание. В любой непонятной ситуации делайте рисунок и размышляйте. Удачи!
Видео:7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать
Неверные утверждения о треугольниках
Укажите номера верных утверждений.
1) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
2) Вертикальные углы равны.
3) Любая биссектриса равнобедренного треугольника является его медианой.
Если утверждений несколько, запишите их номера в порядке возрастания.
Проверим каждое из утверждений.
1) «Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны» — верно по признаку подобия треугольников.
2) «Вертикальные углы равны» — верно, это теорема планиметрии.
3) «Любая биссектриса равнобедренного треугольника является его медианой» — неверно, это утверждение справедливо только для равностороннего треугольника.
Заметим, что признак подобия треугольников в учебнике геометрии сформулирован так: «если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны». В утверждении номер 1 опущено слово «соответственно», что не меняет сути.
Укажите номера верных утверждений.
1) Существует квадрат, который не является прямоугольником.
2) Если два угла треугольника равны, то равны и противолежащие им стороны.
3) Внутренние накрест лежащие углы, образованные двумя параллельными прямыми и секущей, равны.
Если утверждений несколько, запишите их номера в порядке возрастания.
Проверим каждое из утверждений.
1) «Существует квадрат, который не является прямоугольником» — некорректное утверждение, корректное — «Существует прямоугольник, который не является квадратом».
2) «Если два угла треугольника равны, то равны и противолежащие им стороны» — верно, т. к. треугольник, два угла которого равны является равнобедренным, причём равные стороны лежат напротив равных углов.
3) «Внутренние накрест лежащие углы, образованные двумя параллельными прямыми и секущей, равны» — верно, это теорема планиметрии.
Укажите номера верных утверждений.
1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, делит основание на две равные части.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
3) Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу.
Если утверждений несколько, запишите их номера в порядке возрастания.
Проверим каждое из утверждений.
1) «Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, делит основание на две равные части» — верно по свойству равнобедренного треугольника.
2) «В любом прямоугольнике диагонали взаимно перпендикулярны» — неверно, это утверждение справедливо только для прямоугольника, у которого все стороны равны, то есть для квадрата.
3) «Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу» — верно, т. к. окружность — множество точек, находящихся на заданном расстоянии от данной точки.
Видео:7 класс, 15 урок, Первый признак равенства треугольниковСкачать
Верные, неверные утверждения. Геометрия
Верные, неверные утверждения. Задания для подготовки к ГВЭ по математике в 9 классе
Просмотр содержимого документа
«Верные, неверные утверждения. Геометрия»
Верные, неверные утверждения.
Укажите номера верных утверждений. Если их несколько, то записывайте их в порядке возрастания:
1) В равнобедренном треугольнике боковая сторона равна 10см, а основание 5см.
2) Одна из диагоналей параллелограмма со сторонами 7см и 6см равна 10см.
3) Существует треугольник со сторонами 11см, 10см, 21см
4) Треугольник со сторонами 10см, 5см, 8см — прямоугольный.
1. Выберите номера верных утверждений.
1). В треугольнике против большей стороны лежит больший угол.
2). Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180°.
3). Если углы при основании треугольника равны, то треугольник равнобедренный.
2. Выберите номера неверных утверждений.
1). Если две противоположные стороны четырехугольника равны то этот четырехугольник — параллелограмм.
2). Диагонали ромба делят углы ромба пополам.
3). Трапеция равнобедренная, если её боковые стороны параллельны..
3. Выберите номера верных утверждений.
1). Серединный перпендикуляр к хорде проходит через центр окружности.
2). Точка касания двух окружностей лежит на линии центров.
3). Угол между двумя секущими, пересекающимися вне круга, равен полусумме дуг, высекаемых секущими на окружности.
4. Выберите номера верных утверждений.
1). Площадь треугольника равна произведению основания на высоту.
2). Площадь квадрата равна квадрату ее диагоналей.
3). Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
1. Выберите номера верных утверждений.
1). Если при пересечении двух прямых третьей образуются равные соответственные углы, то прямые параллельны.
2). Если гипотенуза одного прямоугольного треугольника равна гипотенузе другого прямоугольного треугольника, то такие треугольники равны.
3). Точка пересечения медиан треугольника- центр описанной окружности.
2. Выберите номера верных утверждений.
1). Диагонали ромба точкой пересечения делятся пополам.
2). В трапеции сумма углов при боковой стороне равна 90°.
3). Четырехугольник, у которого противоположные стороны попарно параллельны называется параллелограммом.
3. Выберите номера неверных утверждений.
1). Центр окружности, вписанной в треугольник,- это точка пересечения высот.
2). Угол, вершина которого лежит в центре окружности, называется вписанным.
3). Угол между касательной и хордой, проведенной из точки касания, равен половине угловой величины дуги,высекаемой на окружности этой хордой.
4. Выберите номера верных утверждений.
1). Площадь треугольника равна произведению периметра на радиус вписанной окружности.
2). Площадь прямоугольника равна половине произведения на синус угла между ними.
3). Косинус острого угла прямоугольного треугольника равен отношению прилежащего катета к гипотенузе.
1. Выберите номера верных утверждений.
1). В треугольнике против меньшего угла лежит большая сторона.
2). При пересечении двух параллельных прямых секущей накрест лежащие углы равны.
3). В равнобедренном треугольнике углы при основании равны.
2. Выберите номера неверных утверждений.
1). В четырехугольнике сумма углов равна 360°.
2). Ромбом называют параллелограмм, у которого все стороны равны.
3). Если в трапецию вписана окружность, то трапеция равнобедренная.
3. Выберите номера верных утверждений.
1). Величина дуги окружности равна величине вписанного угла, на неё опирающегося.
2). Если в четырехугольник можно вписать окружность, то суммы его противоположных сторон равны.
3). Если к окружности из одной точки проведена касательная и секущая, то произведение всей секущей на её внешнюю часть равна квадрату касательной.
4. Выберите номера верных утверждений.
1). Площадь круга диаметром d равна .
2). Площадь параллелограмма равна половине произведения на высоту.
3). Если в подобные треугольники вписаны окружности, то отношение их радиусов равно коэффициенту подобия.
1. Выберите номера верных утверждений.
1). Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.
2). Сумма двух сторон треугольника меньше третьей стороны.
3). Если две прямы параллельны третьей прямой, то они параллельны между собой.
2. Выберите номера верных утверждений.
1). Высота параллелограмма разбивает его на два равных треугольника.
2). В равнобедренной трапеции боковые стороны равны.
3). В ромбе противоположные углы равны.
3. Выберите номера неверных утверждений.
1). В ромбе диагонали являются биссектрисами углов.
2). Окружность симметрична относительно любого своего диаметра.
3). Гипотенуза прямоугольного треугольника равна радиусу окружности, описанной около этого треугольника.
4. Выберите номера верных утверждений.
1). Площадь треугольник равна отношению длин его сторон к радиусу описанной окружности.
2). Площадь трапеции равна произведению средней линии на высоту.
3). В прямоугольном треугольнике отношение катета к гипотенузе равно синусу угла, противолежащего этому катету.
💡 Видео
Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать
Высота, биссектриса, медиана. 7 класс.Скачать
Жестокая задача о равнобедренных треугольникахСкачать
№232. Верно ли утверждение: если треугольник равнобедренный, то один из его внешнихСкачать
Треугольники. 7 класс.Скачать
Задание 10 Квадратичная функция Поиск верных неверных утвержденийСкачать
Неравенства треугольника. Практическая часть. 7 класс.Скачать
Первый признак равенства треугольников. 7 класс.Скачать
Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать
Подобные треугольникиСкачать
Задача на выбор неверных утвержденийСкачать
Признаки равенства треугольников. 7 класс.Скачать
Признаки равенства треугольников ✔️ #умскул_профильнаяматематика #никитасалливан #егэпрофильСкачать
9 класс. Геометрия. Решение треугольниковСкачать
Решение задачи гиа по модулю геометрия: указать неверные утверждения.Скачать
ГИА по математике 2013, модуль геометрия: выбрать неверные утверждения.Скачать
Как сдать ОГЭ по математике на ТРОЙКУ? / Какие утверждения для фигур необходимо знать для сдачи ОГЭ?Скачать