Неравенство треугольника 7 класс доказательство

Неравенство треугольника

Теорема 1 Любая сторона треугольника меньше суммы двух других сторон.

Доказательство. Рассмотрим произвольный треугольник ABC (Рис.1).

Неравенство треугольника 7 класс доказательство

Докажем, что ( small AC lt AB+BC .) На продолжении стороны AB отложим отрезок BD равный стороне BC. Полученный треугольник BCD равнобедренный. тогда ( small angle 1= angle 2.) Рассмотрим треугольник ADC. В этом треугольнике ( small angle ACD gt angle 1 ) и учитывая, что ( small angle 1= angle 2, ) получим ( small angle ACD gt angle 2. ) По теореме 1 статьи Соотношения между сторонами и углами треугольника, против большего угла треугольника лежит большая сторона. Следовательно в треугольнике ADC имеет место неравенство:

Неравенство треугольника 7 класс доказательство.(1)
Неравенство треугольника 7 класс доказательство.(2)

Тогда из (1) и (2) получим:

Неравенство треугольника 7 класс доказательствоНеравенство треугольника 7 класс доказательство

Следствие 1. Для любых точек A, B, C, не расположенных на одной прямой справедливы следующие неравенства:

Неравенство треугольника 7 класс доказательство, Неравенство треугольника 7 класс доказательство, Неравенство треугольника 7 класс доказательство.(3)

Неравенства (3) называются неравенствами треугольника.

Видео:7 класс, 34 урок, Неравенство треугольникаСкачать

7 класс, 34 урок, Неравенство треугольника

Теорема о неравенстве треугольника

Видео:✓ Неравенство треугольника | Ботай со мной #126 | Борис ТрушинСкачать

✓ Неравенство треугольника | Ботай со мной #126 | Борис Трушин

Понятие термина неравенство треугольника и его сторон

Определение: неравенство треугольника в геометрии, математическом анализе и смежных дисциплинах — это свойство, при котором длина любой стороны треугольника всегда меньше суммы длин двух других его сторон.

Теорема о неравенстве треугольников вытекает из теоремы о соотношении сторон и углов треугольника: против большей стороны в треугольнике лежит больший угол и, наоборот, против большего угла лежит большая сторона.

А В > А С > В С , ∠ С > ∠ В > ∠ А .

Видео:Неравенства треугольника. 7 класс.Скачать

Неравенства треугольника. 7 класс.

Теорема о неравенстве треугольника

Основная формулировка: каждая сторона треугольника меньше суммы двух других сторон.

Доказать: А В А С + С В .

Проведем C D = C B , A C + C D = A D . ∠ 1 = ∠ 2 .

В треугольнике АВD требуется доказать, что АВ

Пользуясь теоремой о соотношении углов и сторон: А В A D = A C + C B .

Что и требовалось доказать.

Видео:Неравенство треугольника. Геометрия 7 класс. Доказательство. Задачи по рисункам.Скачать

Неравенство треугольника. Геометрия 7 класс. Доказательство. Задачи по рисункам.

Формула и следствие

Для любых трех точек А, В, С, не лежащих на одной прямой справедливы неравенства:

Длина каждой стороны треугольника больше разности длин двух других его сторон.

По теореме о неравенстве треугольника:

Видео:Геометрия 7 класс (Урок№24 - Соотношения между сторонами и углами треугольника. Неравенство треуг.)Скачать

Геометрия 7 класс (Урок№24 - Соотношения между сторонами и углами треугольника. Неравенство треуг.)

Примеры решения задач

Существует ли треугольник со сторонами: 1 м , 2 м , 3 м .

Решение: по теореме о неравенстве треугольника 3 = 2 + 1 ⇒ 3 = 3

Ответ: такого треугольника не существует.

Существует ли треугольник со сторонами: 3 м , 4 м , 5 м .

Ответ: такой треугольник существует.

Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Краткие упражнения для самостоятельной работы

Одна сторона треугольника равна 2, другая 5. Какой может быть третья сторона, если известно, что ее длина тоже целое число?

Периметр равнобедренного треугольника равен 13, при этом две его стороны отличаются по длине на 4. Чему могут быть равны эти стороны?

Одна сторона треугольника равна 12, другая 5. Чему может быть равна самая короткая сторона этого треугольника? Самая длинная? Средняя по длине?

Видео:7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Неравенство треугольника — определение и вычисление с примерами решения

Содержание:

Неравенство треугольника:

Опыт нам подсказывает, что путь из точки А в точку С по прямой АС короче, чем по ломаной ABC (рис. 255), т. е. АС 12+21 (рис. 258).

Неравенство треугольника 7 класс доказательство

Замечание. Из неравенств треугольника Неравенство треугольника 7 класс доказательствоследует, что Неравенство треугольника 7 класс доказательството есть любая сторона треугольника больше разности двух других его сторон. Так, для стороны а справедливо Неравенство треугольника 7 класс доказательство

Пример:

Внутри треугольника ABC взята точка М (рис. 259). Доказать, что периметр треугольника АМС меньше периметра треугольника ABC.

Неравенство треугольника 7 класс доказательство

Решение:

Так как у треугольников ABC и АМС сторона АС — общая, то достаточно доказать, что AM + МС Неравенство треугольника 7 класс доказательствоB (рис. 108, а).

2) Отложим на стороне АВ отрезок АF, равный стороне AC (рис. 108, б).

Неравенство треугольника 7 класс доказательство

3) Так как АF Неравенство треугольника 7 класс доказательство1.

4) Угол 2 является внешним углом треугольника ВFС, следовательно, Неравенство треугольника 7 класс доказательство2 > Неравенство треугольника 7 класс доказательствоB.

5) Так как треугольник FАС является равнобедренным, то Неравенство треугольника 7 класс доказательство1 = Неравенство треугольника 7 класс доказательство2.

Таким образом, Неравенство треугольника 7 класс доказательствоBСА > Неравенство треугольника 7 класс доказательство1, Неравенство треугольника 7 класс доказательство1 = Неравенство треугольника 7 класс доказательство2 и Неравенство треугольника 7 класс доказательство2 > Неравенство треугольника 7 класс доказательствоB.

Отсюда получаем, что Неравенство треугольника 7 класс доказательствоВСА > Неравенство треугольника 7 класс доказательствоB.

Теорема 2. В треугольнике против большего угла лежит большая сторона.

1) Пусть в треугольнике АBС Неравенство треугольника 7 класс доказательствоС > Неравенство треугольника 7 класс доказательствоB. Докажем, что АВ > АС (см. рис. 108, а). Доказательство проведем методом от противного.

2) Предположим, что это не так. Тогда: либо АВ = АС, либо АВ Неравенство треугольника 7 класс доказательствоC.

В каждом из этих случаев получаем противоречие с условием: Неравенство треугольника 7 класс доказательствоC > Неравенство треугольника 7 класс доказательствоB. Таким образом, сделанное предположение неверно и, значит, АВ > АС.

Из данной теоремы следует утверждение: в прямоугольном треугольнике катет меньше гипотенузы.

Действительно, гипотенуза лежит против прямого угла, а катет — против острого. Поскольку прямой угол больше острого, то по теореме 2 получаем, что гипотенуза больше катета.

Теорема 3 (признак равнобедренного треугольника). Если два угла треугольника равны, то треугольник равнобедренный.

Пусть в треугольнике два угла равны. Тогда равны стороны, лежащие против этих углов. В самом деле, если предположить, что одна из указанных сторон больше другой, то по теореме 1 угол, лежащий против этой стороны, будет больше угла, лежащего против другой стороны, что противоречит условию равенства углов.

Значит, наше предположение неверно и в треугольнике две стороны равны, т. е. треугольник является равнобедренным.

Неравенство треугольника

Докажем, что длина каждой стороны треугольника меньше суммы длин двух других сторон.

Теорема 4. Длина каждой стороны треугольника меньше суммы длин двух других его сторон.

1) Пусть ABC — произвольный треугольник. Докажем, например, что выполняется неравенство АВ Неравенство треугольника 7 класс доказательствоl, следовательно, верно неравенство Неравенство треугольника 7 класс доказательствоАВF > Неравенство треугольника 7 класс доказательство2.

4) Так как в треугольнике против большего угла лежит большая сторона (теорема 2), то АВ

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

📹 Видео

Неравенства треугольника. Практическая часть. 7 класс.Скачать

Неравенства треугольника. Практическая часть. 7 класс.

Неравенство треугольникаСкачать

Неравенство треугольника

Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать

Сумма углов треугольника. Геометрия 7 класс | Математика

Неравенство треугольника | Геометрия 7-9 класс #34 | ИнфоурокСкачать

Неравенство треугольника | Геометрия 7-9 класс #34 | Инфоурок

Неравенство треугольника ★ Любая сторона треугольника меньше суммы двух других сторонСкачать

Неравенство треугольника ★ Любая сторона треугольника меньше суммы двух других сторон

Неравенство треугольникаСкачать

Неравенство треугольника

Геометрия 7 класс (Урок№15 - Решение задач на признаки равенства треугольников.)Скачать

Геометрия 7 класс (Урок№15 - Решение задач на признаки равенства треугольников.)

ГЕОМЕТРИЯ 7 класс : Неравенство треугольника | ВидеоурокСкачать

ГЕОМЕТРИЯ 7 класс : Неравенство треугольника | Видеоурок

Геометрия. 7 класс. Теоремы. Т3. Первый признак равенства треугольников.Скачать

Геометрия. 7 класс. Теоремы. Т3. Первый признак равенства треугольников.

Соотношения между сторонами и углами треугольника. 7 класс.Скачать

Соотношения между сторонами и углами треугольника. 7 класс.

Признаки равенства треугольников. 7 класс.Скачать

Признаки равенства треугольников. 7 класс.

7 класс, 15 урок, Первый признак равенства треугольниковСкачать

7 класс, 15 урок, Первый признак равенства треугольников
Поделиться или сохранить к себе: