Найти сторону не прямоугольного треугольника

Решение треугольников онлайн

С помощю этого онлайн калькулятора можно решить треугольники, т.е. найти неизвестные элементы (стороны, углы) треугольника. Теоретическую часть и численные примеры смотрите ниже.

Решение треугольников − это нахождение всех его элементов (трех сторон и трех углов) по трем известным элементам (сторонам и углам). В статье Треугольники. Признаки равенства треугольников рассматриваются условия, при которых два треугольника оказываются равными друг друга. Как следует из статьи, треугольник однозначно определяется тремя элементами. Это:

  1. Три стороны треугольника.
  2. Две стороны треугольника и угол между ними.
  3. Две стороны и угол противостоящий к одному из этих сторон треугольника.
  4. Одна сторона и любые два угла.

Заметим, что если у треугольника известны два угла, то легко найти третий угол, т.к. сумма всех углов треугольника равна 180°.

Содержание
  1. Решение треугольника по трем сторонам
  2. Решение треугольника по двум сторонам и углу между ними
  3. Решение треугольника по стороне и любым двум углам
  4. Как найти сторону треугольника — в помощь школьнику
  5. При помощи сторон и углов
  6. Равнобедренный треугольник
  7. Прямоугольный треугольник
  8. Итоги
  9. Треугольник. Формулы и свойства треугольников.
  10. Типы треугольников
  11. По величине углов
  12. По числу равных сторон
  13. Вершины углы и стороны треугольника
  14. Свойства углов и сторон треугольника
  15. Теорема синусов
  16. Теорема косинусов
  17. Теорема о проекциях
  18. Формулы для вычисления длин сторон треугольника
  19. Медианы треугольника
  20. Свойства медиан треугольника:
  21. Формулы медиан треугольника
  22. Биссектрисы треугольника
  23. Свойства биссектрис треугольника:
  24. Формулы биссектрис треугольника
  25. Высоты треугольника
  26. Свойства высот треугольника
  27. Формулы высот треугольника
  28. Окружность вписанная в треугольник
  29. Свойства окружности вписанной в треугольник
  30. Формулы радиуса окружности вписанной в треугольник
  31. Окружность описанная вокруг треугольника
  32. Свойства окружности описанной вокруг треугольника
  33. Формулы радиуса окружности описанной вокруг треугольника
  34. Связь между вписанной и описанной окружностями треугольника
  35. Средняя линия треугольника
  36. Свойства средней линии треугольника
  37. Периметр треугольника
  38. Формулы площади треугольника
  39. Формула Герона
  40. Равенство треугольников
  41. Признаки равенства треугольников
  42. Первый признак равенства треугольников — по двум сторонам и углу между ними
  43. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  44. Третий признак равенства треугольников — по трем сторонам
  45. Подобие треугольников
  46. Признаки подобия треугольников
  47. Первый признак подобия треугольников
  48. Второй признак подобия треугольников
  49. Третий признак подобия треугольников

Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

Решение треугольника по трем сторонам

Пусть известны три стороны треугольника a, b, c (Рис.1). Найдем Найти сторону не прямоугольного треугольника.

Найти сторону не прямоугольного треугольника
Найти сторону не прямоугольного треугольника
Найти сторону не прямоугольного треугольника
Найти сторону не прямоугольного треугольника(1)
Найти сторону не прямоугольного треугольника(2)

Из (1) и (2) находим cosA, cosB и углы A и B (используя калькулятор). Далее, угол C находим из выражения

Найти сторону не прямоугольного треугольника.

Пример 1. Известны стороны треугольника ABC: Найти сторону не прямоугольного треугольникаНайти Найти сторону не прямоугольного треугольника(Рис.1).

Решение. Из формул (1) и (2) находим:

Найти сторону не прямоугольного треугольникаНайти сторону не прямоугольного треугольника.
Найти сторону не прямоугольного треугольникаНайти сторону не прямоугольного треугольника.
Найти сторону не прямоугольного треугольника, Найти сторону не прямоугольного треугольника.

И, наконец, находим угол C:

Найти сторону не прямоугольного треугольникаНайти сторону не прямоугольного треугольника

Видео:Нахождение стороны прямоугольного треугольникаСкачать

Нахождение стороны прямоугольного треугольника

Решение треугольника по двум сторонам и углу между ними

Пусть известны стороны треугольника a и b и угол между ними C (Рис.2). Найдем сторону c и углы A и B.

Найти сторону не прямоугольного треугольника

Найдем сторону c используя теорему косинусов:

Найти сторону не прямоугольного треугольника.
Найти сторону не прямоугольного треугольника.

Далее, из формулы

Найти сторону не прямоугольного треугольника.
Найти сторону не прямоугольного треугольника.(3)

Далее из (3) с помощью калькулятора находим угол A.

Поскольку уже нам известны два угла то находим третий:

Найти сторону не прямоугольного треугольника.

Пример 2. Известны две стороны треугольника ABC: Найти сторону не прямоугольного треугольникаи Найти сторону не прямоугольного треугольника(Рис.2). Найти сторону c и углы A и B.

Решение. Иcпользуя теорму косинусов найдем сторону c:

Найти сторону не прямоугольного треугольника,
Найти сторону не прямоугольного треугольникаНайти сторону не прямоугольного треугольникаНайти сторону не прямоугольного треугольника.

Из формулы (3) найдем cosA:

Найти сторону не прямоугольного треугольникаНайти сторону не прямоугольного треугольника
Найти сторону не прямоугольного треугольника.

Поскольку уже нам известны два угла то находим третий:

Найти сторону не прямоугольного треугольникаНайти сторону не прямоугольного треугольника.

Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Решение треугольника по стороне и любым двум углам

Пусть известна сторона треугольника a и углы A и B (Рис.4). Найдем стороны b и c и угол C.

Найти сторону не прямоугольного треугольника

Так как, уже известны два угла, то можно найти третий:

Найти сторону не прямоугольного треугольника.

Далее, для находждения сторон b и c воспользуемся тероемой синусов:

Найти сторону не прямоугольного треугольника, Найти сторону не прямоугольного треугольника.
Найти сторону не прямоугольного треугольника, Найти сторону не прямоугольного треугольника.

Пример 3. Известна одна сторона треугольника ABC: Найти сторону не прямоугольного треугольникаи углы Найти сторону не прямоугольного треугольника(Рис.3). Найти стороны b и c и угол С.

Решение. Поскольку известны два угла, то легко можно найти третий угол С:

Найти сторону не прямоугольного треугольникаНайти сторону не прямоугольного треугольника

Найдем сторону b. Из теоремы синусов имеем:

Найти сторону не прямоугольного треугольника
Найти сторону не прямоугольного треугольника

Найдем сторону с. Из теоремы синусов имеем:

Видео:Почти никто не решил ➜ Найдите сторону треугольникаСкачать

Почти никто не решил ➜ Найдите сторону треугольника

Как найти сторону треугольника — в помощь школьнику

Есть несколько способов решения этой геометрической задачи. Они описаны в статье.

Видео:Теорема Пифагора для чайников)))Скачать

Теорема Пифагора для чайников)))

При помощи сторон и углов

Итак, первый способ нахождения сторон треугольника — это по нескольким сторонам и углу между ними (и аналогично с углами и одной прилежащей стороной). Данный способ подойдет для старшей школы, так как здесь используются такие понятия, как синус, косинус, квадрат числа и корень. Итак, как найти сторону треугольника, который является произвольным? Для начала нарисуем эту самую фигуру. Теперь давайте обзовем элементы нашей фигуры. Стороны будут a, b и c. Угол, находящийся напротив стороны a, у нас будет «альфа», напротив b -«бета», напротив c — «гамма».

Найти сторону не прямоугольного треугольника

Видео:По силам каждому ★ Найдите стороны треугольника на рисункеСкачать

По силам каждому ★ Найдите стороны треугольника на рисунке

Равнобедренный треугольник

Что такое равнобедренный треугольник? Сам по себе он имеет две одинаковые стороны и так называемое основание. Стороны-близнецы обозначим буквой a, основание — b. Стало быть, раз у треугольника есть два «бедра» одной величины, то и углы на «фундаменте» тоже будут одинаковыми. Их назовем «альфа». Для того чтобы ответить, как найти сторону равнобедренного треугольника, необходимо ввести еще одну величину — угол, образованный между равными «бедрами».
Так как он располагается напротив b, то назвать его лучше всего «бета». Здесь при поиске неизвестных сторон можно пользоваться несколькими формулами. Давайте же посмотрим, какими именно. Первые две — это те, по которым можно вычислить длину стороны основания равнобедренного треугольника. Основана она на знаниях ученика о синусах и косинусах.

Найти сторону не прямоугольного треугольника

Найти сторону не прямоугольного треугольника

Видео:ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

Прямоугольный треугольник

Наверное, каждый школьник, который только начал изучение геометрии, знает, что такое прямоугольный треугольник. С первого взгляда в данной фигуре нет ничего особенного, сложного и непонятного. Но вот когда «теряются» данные о той или иной стороне сего геометрического объекта, начинаются проблемы. Дело все в том, что вопрос: «Как найти сторону прямоугольного треугольника?» — затрагивает не только понятия синуса и косинуса, а еще и тангенсов углов. Таким образом, вычисления становятся намного сложнее и больше. Итак, сначала обозначим два катета нарисованного прямоугольного треугольника через a и b. Углы, лежащие напротив этих сторон, как и принято было прежде, назовем «альфа» и «бета» соответственно. Нашей гипотенузой будет служить сторона c. Угол, лежащий против него, нам не понадобится — он будет прямым. Вариантов вычислений тут несколько. Первый называется классическим. Для катета a формулы выглядит как: a=c*cos»бета»=c*sin»альфа»=b*tg»альфа».

Найти сторону не прямоугольного треугольника

Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnline

Итоги

Итак, сегодня мы разобрались, как найти сторону треугольника, и выучили много новых формул. Для того чтобы лучше их запомнить, запишите их на какую-нибудь бумажку, по которой потом будет проще учить все наизусть. Не стоит пугаться «страшных» цифр и больших вычислений. Все проще, чем кажется.

Видео:Задача по геометрии на прямоугольный треугольник и теорему Пифагора из реального ОГЭ по математикеСкачать

Задача по геометрии на прямоугольный треугольник и теорему Пифагора из реального ОГЭ по математике

Треугольник. Формулы и свойства треугольников.

Видео:Задача, которую исключили из экзамена в АмерикеСкачать

Задача, которую исключили из экзамена в Америке

Типы треугольников

По величине углов

Найти сторону не прямоугольного треугольника

Найти сторону не прямоугольного треугольника

Найти сторону не прямоугольного треугольника

По числу равных сторон

Найти сторону не прямоугольного треугольника

Найти сторону не прямоугольного треугольника

Найти сторону не прямоугольного треугольника

Видео:Свойства прямоугольного треугольника. 7 класс.Скачать

Свойства прямоугольного треугольника. 7 класс.

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Найти сторону не прямоугольного треугольника

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c= 2R
sin αsin βsin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Видео:Супер ЖЕСТЬ ➜ Найдите сторону треугольника ➜ Решить без тригонометрииСкачать

Супер ЖЕСТЬ ➜ Найдите сторону треугольника ➜ Решить без тригонометрии

Медианы треугольника

Найти сторону не прямоугольного треугольника

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Видео:Решение прямоугольных треугольников. Практическая часть. 8 класс.Скачать

Решение прямоугольных треугольников. Практическая часть. 8 класс.

Биссектрисы треугольника

Найти сторону не прямоугольного треугольника

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Видео:Теорема косинусов. Решить задачи. Найти сторону по двум сторонам и углу. Найти угол по сторонам.Скачать

Теорема косинусов. Решить задачи. Найти сторону по двум сторонам и углу. Найти угол по сторонам.

Высоты треугольника

Найти сторону не прямоугольного треугольника

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Видео:7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»Скачать

7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»

Окружность вписанная в треугольник

Найти сторону не прямоугольного треугольника

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Видео:Решение прямоугольных треугольниковСкачать

Решение прямоугольных треугольников

Окружность описанная вокруг треугольника

Найти сторону не прямоугольного треугольника

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Видео:Катеты и гипотенузаСкачать

Катеты и гипотенуза

Связь между вписанной и описанной окружностями треугольника

Видео:Найдите третью сторону треугольникаСкачать

Найдите третью сторону треугольника

Средняя линия треугольника

Свойства средней линии треугольника

Найти сторону не прямоугольного треугольника

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Периметр треугольника

Найти сторону не прямоугольного треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Видео:Лайфхак нахождения катета в прямоугольном треугольникеСкачать

Лайфхак нахождения катета в прямоугольном треугольнике

Формулы площади треугольника

Найти сторону не прямоугольного треугольника

Формула Герона

S =a · b · с
4R

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Подобие треугольников

Найти сторону не прямоугольного треугольника

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Поделиться или сохранить к себе: