Найти нормальный вектор плоскости проходящей через параллельные прямые

Уравнение плоскости, проходящей через данную прямую параллельно другой прямой онлайн

С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через прямую L1 параллельно другой прямой L2 (прямые L1 и L2 не параллельны). Дается подробное решение с пояснениями. Для построения уравнения плоскости задайте вид уравнения прямых (канонический или параметрический) введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Видео:10. Параллельность и перпендикулярность плоскостей Решение задачСкачать

10. Параллельность и перпендикулярность плоскостей Решение задач

Уравнение плоскости, проходящей через данную прямую параллельно другой прямой − теория, примеры и решения

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2, которые не параллельны:

Найти нормальный вектор плоскости проходящей через параллельные прямые.(1)
Найти нормальный вектор плоскости проходящей через параллельные прямые.(2)

Задача заключается в построении уравнения плоскости α, проходящей через прямую L1 параллельно прямой L2(Рис.1).

Найти нормальный вектор плоскости проходящей через параллельные прямые

Прамая L1 должна лежать на искомой плоскости α, следовательно точка M1 должна нежать на плоскости α.

Уравнение плоскости можно записать формулой

Ax+By+Cz+D=0.(3)

и поскольку M1(x1, y1, z1) принадлежит этой плоскости, то справедливо следующее равенство:

Ax1+By1+Cz1+D=0.(4)

Для того, чтобы плоскость α проходила через прямую L1, нормальный вектор плоскости n=<A, B, C> должен быть ортогональным направляющему вектору q1 прямой L1, т.е. скалярное произведение этих векторов должен быть равным нулю:

Am1+Bp1+Cl1=0(5)

Для того, чтобы плоскость α была параллельна прямой L2, нормальный вектор плоскости n=<A, B, C> должен быть ортогональным направляющему вектору q2 прямой L2, т.е. скалярное произведение этих векторов должен быть равным нулю:

Am2+Bp2+Cl2=0(6)

Таким образом мы должны решить систему трех уравнений с четыремя неизвестными (4)−(6). Представим систему линейных уравнений (4)−(6) в матричном виде:

Найти нормальный вектор плоскости проходящей через параллельные прямые

(7)

Решив однородную систему линейных уравнений (7) найдем частное решение. (как решить систему линейных уравнений посмотрите на странице метод Гаусса онлайн). Подставляя полученные коэффициенты A, B, C и D в уравнение (3), получим уравнение плоскости, проходящей через прямую L1 параллельно прямой L2.

Пример 1. Найти уравнение плоскости α, проходящей через прямую L1:

Найти нормальный вектор плоскости проходящей через параллельные прямые(8)

паралленьно другой прямой L2 :

Найти нормальный вектор плоскости проходящей через параллельные прямые(9)
Найти нормальный вектор плоскости проходящей через параллельные прямые
Найти нормальный вектор плоскости проходящей через параллельные прямые

Поскольку плоскость проходит через прямую L1 , то она проходит также через точку M1(x1, y1, z1)=M1(1, 1, 5) и нормальный вектор плоскости n=<A, B, C> перпендикулярна направляющему вектору q1=<m1, p1, l1>= прямой L1. Тогда уравнение плоскости должна удовлетворять условию:

Найти нормальный вектор плоскости проходящей через параллельные прямые(10)

а условие параллельности прямой L1 и искомой плоскости α представляется следующим равенством:

Найти нормальный вектор плоскости проходящей через параллельные прямые(11)

Так как плоскость α должна быть параллельной прямой L2, то должна выполнятся условие:

Найти нормальный вектор плоскости проходящей через параллельные прямые(12)
Найти нормальный вектор плоскости проходящей через параллельные прямые(13)
Найти нормальный вектор плоскости проходящей через параллельные прямые(14)
Найти нормальный вектор плоскости проходящей через параллельные прямые(15)

Представим эти уравнения в матричном виде:

Найти нормальный вектор плоскости проходящей через параллельные прямые(16)

Решим систему линейных уравнений (16) отностительно A, B, C, D:

Найти нормальный вектор плоскости проходящей через параллельные прямые(17)

Так как искомая плоскость проходит через точку M1 и имеет нормальный вектор n=<A, B, C>= то она может быть представлена формулой:

Ax+By+Cz+D=0(18)

Подставляя значения A,B,C,D в (17), получим:

Найти нормальный вектор плоскости проходящей через параллельные прямые(18)

Уравнение плоскости можно представить более упрощенном виде, умножив на число −24:

13x−4y+3z−24=0(19)

Ответ: Уравнение плоскости, проходящей через прямую (1) параллельно прямой (2) имеет вид (19).

Пример 2. Найти уравнение плоскости α, проходящей через прямую L1:

Найти нормальный вектор плоскости проходящей через параллельные прямые(20)
q1=<m1, p1, l1>=
q2=<m2, p2, l2>=

Поскольку плоскость проходит через прямую L1 , то она проходит также через точку M1(x1, y1, z1)=M1(−2, 0, 1) и нормальный вектор плоскости n=<A, B, C> перпендикулярна направляющему вектору q1=<m1, p1, l1>= прямой L1. Тогда уравнение плоскости должна удовлетворять условию:

Ax1+By1+Cz1+D=0(22)

а условие параллельности прямой L1 и искомой плоскости α представляется следующим равенством:

Найти нормальный вектор плоскости проходящей через параллельные прямые(23)

Так как плоскость α должна быть параллельной прямой L2, то должна выполнятся условие:

Найти нормальный вектор плоскости проходящей через параллельные прямые(24)
A(−2)+B·0+C·1+D=0,(25)
A·5+B(−8)+C·3=0,(26)
A·1+B·1+C·1=0,(27)

Представим эти уравнения в матричном виде:

Найти нормальный вектор плоскости проходящей через параллельные прямые(28)

Решим систему линейных уравнений (28) отностительно A, B, C, D:

Найти нормальный вектор плоскости проходящей через параллельные прямые(29)

Так как искомая плоскость проходит через точку M1 и имеет нормальный вектор n=<A, B, C>= то она может быть представлена формулой:

Ax+By+Cz+D=0(30)

Подставляя значения A,B,C,D в (30), получим:

Найти нормальный вектор плоскости проходящей через параллельные прямые(31)

Уравнение плоскости можно представить более упрощенном виде, умножив на число 35:

11x+2y−13z+35=0(32)

Ответ: Уравнение плоскости, проходящей через прямую (1) параллельно прямой (2) имеет вид (32).

Видео:Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Нормальный вектор плоскости, координаты нормального вектора плоскости

Существует ряд заданий, которым для решения необходимо нормальный вектор на плоскости, чем саму плоскость. Поэтому в этой статье получим ответ на вопрос определения нормального вектора с примерами и наглядными рисунками. Определим векторы трехмерного пространства и плоскости по уравнениям.

Видео:1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примеры

Нормальный вектор плоскости – определение, примеры, иллюстрации

Чтобы материал легко усваивался, необходимо предварительно изучить теорию о прямой в пространстве и представление ее на плоскости и векторы.

Нормальным вектором плоскости считается любой ненулевой вектор, который лежит на перпендикулярной к данной плоскости прямой.

Отсюда следует, что имеет место существование большого количества нормальных векторов в данной плоскости. Рассмотрим на рисунке, приведенном ниже.

Найти нормальный вектор плоскости проходящей через параллельные прямые

Нормальные векторы располагаются на параллельных прямых, поэтому они все коллинеарны. То есть, при нормальном векторе n → , расположенном в плоскости γ , вектор t · n → , имея ненулевое значение параметра t , также нормальный вектор плоскости γ . Любой вектор может быть рассмотрен как направляющий вектор прямой, которая перпендикулярна этой плоскости.

Имеются случаи совпадения нормальных векторов плоскостей из-за перпендикулярности одной из параллельных плоскостей, так как прямая перпендикулярна и второй плоскости. Отсюда следует, что нормальные векторы перпендикулярных плоскостей должны быть перпендикулярными.

Рассмотрим на примере нормального вектора на плоскости.

Задана прямоугольная система координат О х у z в трехмерном пространстве. Координатные векторы i → , j → , k → считаются нормальными векторами плоскостей O y z , O x z и O x y . Это суждение верно, так как i → , j → , k → ненулевые и расположены на координатных прямых O x , O y и O z . Эти прямые перпендикулярны координатным плоскостям O y z , O x z и O x y .

Видео:Уравнение плоскости через 2 точки параллельно векторуСкачать

Уравнение плоскости через 2 точки параллельно вектору

Координаты нормального вектора плоскости – нахождение координат нормального вектора плоскости из уравнения плоскости

Статья предназначена для того, чтобы научить находить координаты нормального вектора плоскости при известном уравнении плоскости прямоугольной системы координат О х у z . Для определения нормального вектора n → = ( A , B , C ) в плоскости необходимо наличие общего уравнения плоскости, имеющее вид A x + B y + C z + D = 0 . То есть достаточно иметь уравнение плоскости, тогда появится возможность для нахождения координат нормального вектора.

Найти координаты нормального вектора, принадлежащего плоскости 2 x — 3 y + 7 z — 11 = 0 .

По условию имеем уравнение плоскости. Необходимо обратить внимание на коэффициенты, так как они и являются координатами нормального вектора заданной плоскости. Отсюда получаем, что n → = ( 2 , — 3 , 7 ) — это нормальный вектор плоскости. Все векторы плоскости задаются при помощи формулы t · n → = 2 · t , — 3 · t , 7 · t , t является любым действительным числом не равным нулю.

Ответ: n → = ( 2 , — 3 , 7 ) .

Определить координаты направляющих векторов заданной плоскости x + 2 z — 7 = 0 .

По условию имеем, что дано неполное уравнение плоскости. Чтобы увидеть координаты, необходимо преобразовать уравнение x + 2 z — 7 = 0 к виду 1 · x + 0 · y + 2 z — 7 = 0 . Отсюда получим, что координаты нормального вектора данной плоскости равны ( 1 , 0 , 2 ) . Тогда множество векторов будет иметь такую форму записи ( t , 0 , 2 · t ) , t ∈ R , t ≠ 0 .

Ответ: ( t , 0 , 2 · t ) , t ∈ R , t ≠ 0 .

При помощи уравнения плоскости в отрезках, имеющего вид x a + y b + z c = 1 , и общего уравнения плоскости возможна запись нормального вектора этой плоскости, где координаты равны 1 a , 1 b , 1 c .

Знания о нормальном векторе позволяют с легкостью решать задачи. Часто встречающимися задачами являются задания с доказательствами параллельности или перпендикулярности плоскостей. Заметно упрощается решение задач на составление уравнений заданной плоскости. Если имеется вопрос о нахождении угла между плоскостями или между прямой и плоскостью, то формулы нормального вектора и нахождения его координат помогут в этом.

Видео:17. Показать что прямые пересекаются и составить уравнение плоскости в которой они расположеныСкачать

17. Показать что прямые пересекаются и составить уравнение плоскости в которой они расположены

Нормальный вектор плоскости, координаты нормального вектора плоскости.

Хорошее представление о прямой линии начинается с момента, когда вместе с ее образом одновременно возникают образы ее направляющих и нормальных векторов. Аналогично, при упоминании о плоскости в пространстве, она должна представляться вместе со своим нормальным вектором. Почему так? Да потому что во многих случаях удобнее использовать нормальный вектор плоскости, чем саму плоскость.

В этой статье мы сначала дадим определение нормального вектора плоскости, приведем примеры нормальных векторов и необходимые графические иллюстрации. Далее поместим плоскость в прямоугольную систему координат в трехмерном пространстве и научимся определять координаты нормального вектора плоскости по ее уравнению.

Навигация по странице.

Видео:Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать

Как составить уравнение прямой, проходящей через две точки на плоскости | Математика

Нормальный вектор плоскости – определение, примеры, иллюстрации.

Для хорошего усвоения материала нам потребуется хорошее представление о прямой в пространстве, представление о плоскости и определения из статьи векторы – основные определения.

Дадим определение нормального вектора плоскости.

Нормальный вектор плоскости — это любой ненулевой вектор, лежащий на прямой перпендикулярной к данной плоскости.

Из определения следует, что существует бесконечное множество нормальных векторов данной плоскости.

Найти нормальный вектор плоскости проходящей через параллельные прямые

Так как все нормальные векторы заданной плоскости лежат на параллельных прямых, то все нормальные векторы плоскости коллинеарны. Другими словами, если Найти нормальный вектор плоскости проходящей через параллельные прямые— нормальный вектор плоскости Найти нормальный вектор плоскости проходящей через параллельные прямые, то вектор Найти нормальный вектор плоскости проходящей через параллельные прямыепри некотором ненулевом действительном значении t также является нормальным вектором плоскости Найти нормальный вектор плоскости проходящей через параллельные прямые(смотрите статью условие коллинеарности векторов).

Также следует заметить, что любой нормальный вектор плоскости можно рассматривать как направляющий вектор прямой, перпендикулярной к этой плоскости.

Множества нормальных векторов параллельных плоскостей совпадают, так как прямая, перпендикулярная к одной из параллельных плоскостей, перпендикулярна и ко второй плоскости.

Из определения перпендикулярных плоскостей и определения нормального вектора плоскости следует, что нормальные векторы перпендикулярных плоскостей перпендикулярны.

Приведем пример нормального вектора плоскости.

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz . Координатные векторы Найти нормальный вектор плоскости проходящей через параллельные прямыеявляются нормальными векторами плоскостей Oyz , Oxz и Oxy соответственно. Это действительно так, потому что векторы Найти нормальный вектор плоскости проходящей через параллельные прямыененулевые и лежат на координатных прямых Ox , Oy и Oz соответственно, которые перпендикулярны координатным плоскостям Oyz , Oxz и Oxy соответственно.

Видео:Направляющий и нормальный вектор прямой на плоскости | Векторная алгебраСкачать

Направляющий и нормальный вектор прямой на плоскости | Векторная алгебра

Координаты нормального вектора плоскости – нахождение координат нормального вектора плоскости по уравнению плоскости.

Озвучим цель, которая преследовалась при создании этого пункта статьи: научиться находить координаты нормального вектора плоскости, если известно уравнение плоскости в прямоугольной системе координат Oxyz .

Общее уравнение плоскости вида Найти нормальный вектор плоскости проходящей через параллельные прямыеопределяет в прямоугольной системе координат Oxyz плоскость, нормальным вектором которой является вектор Найти нормальный вектор плоскости проходящей через параллельные прямые. Таким образом, чтобы найти координаты нормального вектора плоскости нам достаточно иметь перед глазами общее уравнение этой плоскости.

Рассмотрим несколько примеров.

Найдите координаты какого-либо нормального вектора плоскости Найти нормальный вектор плоскости проходящей через параллельные прямые.

Нам дано общее уравнение плоскости, коэффициенты перед переменными x , y и z представляют собой соответствующие координаты нормального вектора этой плоскости. Следовательно, Найти нормальный вектор плоскости проходящей через параллельные прямые— один из нормальных векторов заданной плоскости. Множество всех нормальных векторов этой плоскости можно задать как Найти нормальный вектор плоскости проходящей через параллельные прямые, где t — произвольное действительное число, отличное от нуля.

Найти нормальный вектор плоскости проходящей через параллельные прямые

Плоскость задана уравнением Найти нормальный вектор плоскости проходящей через параллельные прямые. Определите координаты ее направляющих векторов.

Нам дано неполное уравнение плоскости. Чтобы стали видны координаты ее направляющего вектора, перепишем уравнение Найти нормальный вектор плоскости проходящей через параллельные прямыев виде Найти нормальный вектор плоскости проходящей через параллельные прямые. Таким образом, нормальный вектор этой плоскости имеет координаты Найти нормальный вектор плоскости проходящей через параллельные прямые, а множество всех нормальных векторов запишется как Найти нормальный вектор плоскости проходящей через параллельные прямые.

Найти нормальный вектор плоскости проходящей через параллельные прямые

Уравнение плоскости в отрезках вида Найти нормальный вектор плоскости проходящей через параллельные прямые, как и общее уравнение плоскости, позволяет сразу записать один из нормальных векторов этой плоскости – он имеет координаты Найти нормальный вектор плоскости проходящей через параллельные прямые.

В заключении скажем, что с помощью нормального вектора плоскости могут быть решены различные задачи. Самыми распространенными являются задачи на доказательство параллельности или перпендикулярности плоскостей, задачи на составление уравнения плоскости, а также задачи на нахождение угла между плоскостями и на нахождение угла между прямой и плоскостью.

🎬 Видео

Записать уравнение прямой параллельной или перпендикулярной данной.Скачать

Записать уравнение прямой параллельной или перпендикулярной данной.

Написать канонические и параметрические уравнения прямой в пространствеСкачать

Написать канонические и параметрические уравнения прямой в пространстве

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Параллельность прямой и плоскости. 10 класс.Скачать

Параллельность прямой и плоскости. 10 класс.

Аналитическая геометрия, 5 урок, Уравнение плоскостиСкачать

Аналитическая геометрия, 5 урок, Уравнение плоскости

Видеоурок "Общие уравнения прямой"Скачать

Видеоурок "Общие уравнения прямой"

Видеоурок "Канонические уравнения прямой"Скачать

Видеоурок "Канонические уравнения прямой"

Геометрия. 9 класс. Уравнение прямой. Направляющий вектор и вектор нормали прямой /22.10.2020/Скачать

Геометрия. 9 класс. Уравнение прямой. Направляющий вектор и вектор нормали прямой /22.10.2020/

12. Уравнения прямой в пространстве Решение задачСкачать

12. Уравнения прямой в пространстве Решение задач

Расстояние между параллельными прямымиСкачать

Расстояние между параллельными прямыми
Поделиться или сохранить к себе: