Найти дугу окружности по углу вписанного треугольника

Углы, связанные с окружностью
Найти дугу окружности по углу вписанного треугольникаВписанные и центральные углы
Найти дугу окружности по углу вписанного треугольникаУглы, образованные хордами, касательными и секущими
Найти дугу окружности по углу вписанного треугольникаДоказательства теорем об углах, связанных с окружностью

Видео:Длина дуги окружности. 9 класс.Скачать

Длина дуги окружности. 9 класс.

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Найти дугу окружности по углу вписанного треугольника

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Найти дугу окружности по углу вписанного треугольника

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Видео:Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

ФигураРисунокТеорема
Вписанный уголНайти дугу окружности по углу вписанного треугольника
Вписанный уголНайти дугу окружности по углу вписанного треугольникаВписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный уголНайти дугу окружности по углу вписанного треугольникаВписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный уголНайти дугу окружности по углу вписанного треугольникаДва вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный уголНайти дугу окружности по углу вписанного треугольникаВписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольникаНайти дугу окружности по углу вписанного треугольника

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Найти дугу окружности по углу вписанного треугольника

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Найти дугу окружности по углу вписанного треугольника

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Найти дугу окружности по углу вписанного треугольника

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Найти дугу окружности по углу вписанного треугольника

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Найти дугу окружности по углу вписанного треугольника

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Найти дугу окружности по углу вписанного треугольника

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

ФигураРисунокТеоремаФормула
Угол, образованный пересекающимися хордамиНайти дугу окружности по углу вписанного треугольникаНайти дугу окружности по углу вписанного треугольника
Угол, образованный секущими, которые пересекаются вне кругаНайти дугу окружности по углу вписанного треугольникаНайти дугу окружности по углу вписанного треугольника
Угол, образованный касательной и хордой, проходящей через точку касанияНайти дугу окружности по углу вписанного треугольникаНайти дугу окружности по углу вписанного треугольника
Угол, образованный касательной и секущейНайти дугу окружности по углу вписанного треугольникаНайти дугу окружности по углу вписанного треугольника
Угол, образованный двумя касательными к окружностиНайти дугу окружности по углу вписанного треугольникаНайти дугу окружности по углу вписанного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Найти дугу окружности по углу вписанного треугольника

Найти дугу окружности по углу вписанного треугольника

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Найти дугу окружности по углу вписанного треугольника

Найти дугу окружности по углу вписанного треугольника

Найти дугу окружности по углу вписанного треугольника

Найти дугу окружности по углу вписанного треугольника

Угол, образованный пересекающимися хордами хордами
Найти дугу окружности по углу вписанного треугольника
Формула: Найти дугу окружности по углу вписанного треугольника
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула: Найти дугу окружности по углу вписанного треугольника

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой хордой , проходящей через точку касания
Найти дугу окружности по углу вписанного треугольника
Формула: Найти дугу окружности по углу вписанного треугольника
Угол, образованный касательной и секущей касательной и секущей
Формула: Найти дугу окружности по углу вписанного треугольника

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными касательными к окружности
Формулы: Найти дугу окружности по углу вписанного треугольника

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Видео:Вписанные углы в окружностиСкачать

Вписанные углы в окружности

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Найти дугу окружности по углу вписанного треугольника

Найти дугу окружности по углу вписанного треугольника

Найти дугу окружности по углу вписанного треугольника

Найти дугу окружности по углу вписанного треугольника

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

Найти дугу окружности по углу вписанного треугольника

В этом случае справедливы равенства

Найти дугу окружности по углу вписанного треугольника

Найти дугу окружности по углу вписанного треугольника

Найти дугу окружности по углу вписанного треугольника

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

Найти дугу окружности по углу вписанного треугольника

В этом случае справедливы равенства

Найти дугу окружности по углу вписанного треугольника

Найти дугу окружности по углу вписанного треугольника

Найти дугу окружности по углу вписанного треугольника

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Найти дугу окружности по углу вписанного треугольника

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

Найти дугу окружности по углу вписанного треугольника

Найти дугу окружности по углу вписанного треугольника

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Найти дугу окружности по углу вписанного треугольника

Найти дугу окружности по углу вписанного треугольника

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

Найти дугу окружности по углу вписанного треугольника

Найти дугу окружности по углу вписанного треугольника

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Найти дугу окружности по углу вписанного треугольника

Найти дугу окружности по углу вписанного треугольника

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

Найти дугу окружности по углу вписанного треугольника

Найти дугу окружности по углу вписанного треугольника

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Найти дугу окружности по углу вписанного треугольника

Найти дугу окружности по углу вписанного треугольника

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

Найти дугу окружности по углу вписанного треугольника

Найти дугу окружности по углу вписанного треугольника

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Найти дугу окружности по углу вписанного треугольника

Найти дугу окружности по углу вписанного треугольника

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

Видео:Найти угол треугольника, вписанного во вписанную окружностьСкачать

Найти угол треугольника, вписанного во вписанную окружность

Треугольник вписанный в окружность

Найти дугу окружности по углу вписанного треугольника

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

Найти дугу окружности по углу вписанного треугольника

Видео:Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

Радиус вписанной окружности в треугольник,
если известны площадь и периметр:

Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

Радиус описанной окружности около треугольника,
если известны все стороны и площадь:

Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

Площадь треугольника вписанного в окружность,
если известен полупериметр:

Площадь треугольника вписанного в окружность,
если известен высота и основание:

Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:

Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:

[ S = fracab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1. Периметр треугольника вписанного в окружность,
    если известны все стороны:

Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:

Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

Сторона треугольника вписанного в
окружность, если известна сторона и два угла:

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:

[ h = b cdot sin alpha ]

Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:

Видео:8 класс, 33 урок, Градусная мера дуги окружностиСкачать

8 класс, 33 урок, Градусная мера дуги окружности

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

Найти дугу окружности по углу вписанного треугольника

окружность и треугольник,
которые изображены на рисунке 2.

окружность описана
около треугольника.

  1. Проведем серединные
    перпендикуляры — HO, FO, EO.
  2. O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

Видео:№655. Центральный угол АОВ на 30° больше вписанного угла, опирающегося на дугу АВ. НайдитеСкачать

№655. Центральный угол АОВ на 30° больше вписанного угла, опирающегося на дугу АВ. Найдите

Центральные и вписанные углы

Найти дугу окружности по углу вписанного треугольника

О чем эта статья:

Видео:8кл.Вписанный угол.стандартные задачи(найти величину вписанного угла по дуге и наоборот)Скачать

8кл.Вписанный угол.стандартные задачи(найти величину вписанного угла по дуге и наоборот)

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

Найти дугу окружности по углу вписанного треугольника

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

Найти дугу окружности по углу вписанного треугольника

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Видео:ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Найти дугу окружности по углу вписанного треугольника

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:

Найти дугу окружности по углу вписанного треугольника

  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

Найти дугу окружности по углу вписанного треугольника

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

Найти дугу окружности по углу вписанного треугольника

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

Найти дугу окружности по углу вписанного треугольника

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

Найти дугу окружности по углу вписанного треугольника

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

Найти дугу окружности по углу вписанного треугольника

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

Найти дугу окружности по углу вписанного треугольника

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

Найти дугу окружности по углу вписанного треугольника

ㄥBAC + ㄥBDC = 180°

Видео:8 класс, 34 урок, Теорема о вписанном углеСкачать

8 класс, 34 урок, Теорема о вписанном угле

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Найти дугу окружности по углу вписанного треугольника

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Найти дугу окружности по углу вписанного треугольника

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

Найти дугу окружности по углу вписанного треугольника

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

🎦 Видео

2166 Найдите вписанный угол опирающийся на дугу которая составляет 20 окружностиСкачать

2166 Найдите вписанный угол опирающийся на дугу которая составляет 20 окружности

2163 Найдите вписанный угол опирающийся на дугу которая составляет 5/36 окружностиСкачать

2163 Найдите вписанный угол опирающийся на дугу которая составляет 5/36 окружности

Окружнось, дуга, длина дуги, центральный угол.Скачать

Окружнось, дуга, длина дуги, центральный угол.

Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)Скачать

Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)

Задача 6 №27885 ЕГЭ по математике. Урок 122Скачать

Задача 6 №27885 ЕГЭ по математике. Урок 122

🔴 Найдите вписанный угол, опирающийся на дугу ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРАСкачать

🔴 Найдите вписанный угол, опирающийся на дугу ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРА

Вписанные и центральные углыСкачать

Вписанные и центральные углы
Поделиться или сохранить к себе: