Найдите угловую скорость материальной точки движущейся по окружности радиусом

Движение по окружности с постоянной по модулю скоростью

теория по физике 🧲 кинематика

Криволинейное движение — движение, траекторией которого является кривая линия. Вектор скорости тела, движущегося по кривой линии, направлен по касательной к траектории. Любой участок криволинейного движения можно представить в виде движения по дуге окружности или по участку ломаной.

Движение по окружности с постоянной по модулю скоростью — частный и самый простой случай криволинейного движения. Это движение с переменным ускорением, которое называется центростремительным.

Найдите угловую скорость материальной точки движущейся по окружности радиусом

Особенности движения по окружности с постоянной по модулю скоростью:

  1. Траектория движения тела есть окружность.
  2. Вектор скорости всегда направлен по касательной к окружности.
  3. Направление скорости постоянно меняется под действием центростремительного ускорения.
  4. Центростремительное ускорение направлено к центру окружности и не вызывает изменения модуля скорости.

Видео:Центростремительное ускорение. 9 класс.Скачать

Центростремительное ускорение. 9 класс.

Период, частота и количество оборотов

Пусть тело двигается по окружности беспрерывно. Когда оно сделает один оборот, пройдет некоторое время. Когда тело сделает еще один оборот, пройдет еще столько же времени. Это время не будет меняться, потому что тело движется с постоянной по модулю скоростью. Такое время называют периодом.

Период — время одного полного оборота. Обозначается буквой T. Единица измерения — секунды (с).

Найдите угловую скорость материальной точки движущейся по окружности радиусом

t — время, в течение которого тело совершило N оборотов

За один и тот же промежуток времени тело может проходить лишь часть окружности или совершать несколько единиц, десятков, сотен или более оборотов. Все зависит от длины окружности и модуля скорости.

Частота — количество оборотов, совершенных в единицу времени. Обозначается буквой ν («ню»). Единица измерения — Гц.

Найдите угловую скорость материальной точки движущейся по окружности радиусом

N — количество оборотов, совершенных телом за время t.

Период и частота — это обратные величины, определяемые формулами:

Найдите угловую скорость материальной точки движущейся по окружности радиусом

Количество оборотов выражается следующей формулой:

Найдите угловую скорость материальной точки движущейся по окружности радиусом

Пример №1. Шарик на нити вращается по окружности. За 10 секунд он совершил 20 оборотов. Найти период и частоту вращения шарика.

Найдите угловую скорость материальной точки движущейся по окружности радиусом

Видео:Физика - движение по окружностиСкачать

Физика - движение по окружности

Линейная и угловая скорости

Линейная скорость

Линейная скорость — это отношение пройденного пути ко времени, в течение которого этот путь был пройден. Обозначается буквой v. Единица измерения — м/с.

Найдите угловую скорость материальной точки движущейся по окружности радиусом

l — длина траектории, вдоль которой двигалось тело за время t

Линейную скорость можно выразить через период. За один период тело делает один оборот, то есть проходить путь, равный длине окружности. Поэтому его скорость равна:

Найдите угловую скорость материальной точки движущейся по окружности радиусом

R — радиус окружности, по которой движется тело

Если линейную скорость можно выразить через период, то ее можно выразить и через частоту — величину, обратную периоду. Тогда формула примет

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Найдите угловую скорость материальной точки движущейся по окружности радиусом

Выразив частоту через количество оборотов и время, в течение которого тело совершало эти обороты, получим:

Найдите угловую скорость материальной точки движущейся по окружности радиусом

Угловая скорость

Угловая скорость — это отношение угла поворота тела ко времени, в течение которого тело совершало этот поворот. Обозначается буквой ω. Единица измерения — радиан в секунду (рад./с).

Найдите угловую скорость материальной точки движущейся по окружности радиусом

ϕ — угол поворота тела. t — время, в течение которого тело повернулось на угол ϕ

Радиан — угол, соответствующий дуге, длина которой равна ее радиусу. Полный угол равен 2π радиан.

Найдите угловую скорость материальной точки движущейся по окружности радиусом

За один полный оборот тело поворачивается на 2π радиан. Поэтому угловую скорость можно выразить через период:

Найдите угловую скорость материальной точки движущейся по окружности радиусом

Выражая угловую скорость через частоту, получим:

Найдите угловую скорость материальной точки движущейся по окружности радиусом

Выразив частоту через количество оборотов, формула угловой скорости примет вид:

Найдите угловую скорость материальной точки движущейся по окружности радиусом

Сравним две формулы:

Найдите угловую скорость материальной точки движущейся по окружности радиусом

Преобразуем формулу линейной скорости и получим:

Найдите угловую скорость материальной точки движущейся по окружности радиусом

Отсюда получаем взаимосвязь между линейной и угловой скоростями:

Найдите угловую скорость материальной точки движущейся по окружности радиусом

Полезные факты

  • У вращающихся прижатых друг к другу цилиндров линейные скорости точек их поверхности равны: v1 = v2.
  • У вращающихся шестерен линейные скорости точек их поверхности также равны: v1 = v2.
  • Все точки вращающегося твердого тела имеют одинаковые периоды, частоты и угловые скорости, но разные линейные скорости. T1 = T2, ν1 = ν2, ω1 = ω2. Но v1 ≠ v2.

Пример №2. Период обращения Земли вокруг Солнца равен одному году. Радиус орбиты Земли равен 150 млн. км. Чему примерно равна скорость движения Земли по орбите? Ответ округлить до целых.

В году 365 суток, в одних сутках 24 часа, в 1 часе 60 минут, в одной минуте 60 секунд. Перемножив все эти числа между собой, получим период в секундах.

Найдите угловую скорость материальной точки движущейся по окружности радиусом

За каждую секунду Земля проходит расстояние, равное примерно 30 км.

Видео:Криволинейное, равномерное движение материальной точки по окружности. 9 класс.Скачать

Криволинейное, равномерное движение материальной точки по окружности. 9 класс.

Центростремительное ускорение

Центростремительное ускорение — ускорение с постоянным модулем, но меняющимся направлением. Поэтому оно вызывает изменение направления вектора скорости, но не изменяет его модуль. Центростремительное ускорение обозначается как aц.с.. Единица измерения — метры на секунду в квадрате (м/с 2 ). Центростремительное ускорение можно выразить через линейную и угловую скорости, период, частоту и количество оборотов/время:

Найдите угловую скорость материальной точки движущейся по окружности радиусом

Пример №3. Рассчитать центростремительное ускорение льва, спящего на экваторе, в системе отсчета, две оси которой лежат в плоскости экватора и направлены на неподвижные звезды, а начало координат совпадает с центром Земли.

Спящий лев сделает один полный оборот тогда, когда Земля сделает один оборот вокруг своей оси. Земля делает это за время, равное 1 сутки. Поэтому период обращения равен 1 суткам. Количество секунд в сутках: 1 сутки = 24•60•60 секунд = 86400 секунд = 86,4∙10 3 секунд.

Радиус Земли равен 6400 км. В метрах это будет 6,4∙10 6 . Теперь у нас есть все, что нужно для вычисления центростремительного ускорения. Подставляем данные в формулу:

Найдите угловую скорость материальной точки движущейся по окружности радиусом

Алгоритм решения

  1. Записать исходные данные.
  2. Записать формулу для определения искомой величины.
  3. Подставить известные данные в формулу и произвести вычисления.

Решение

Записываем исходные данные:

  • Радиус окружности, по которой движется автомобиль: R = 100 м.
  • Скорость автомобиля во время движения по окружности: v = 20 м/с.

Формула, определяющая зависимость центростремительного ускорения от скорости движения тела:

Найдите угловую скорость материальной точки движущейся по окружности радиусом

Подставляем известные данные в формулу и вычисляем:

Найдите угловую скорость материальной точки движущейся по окружности радиусом

pазбирался: Алиса Никитина | обсудить разбор | оценить

Точка движется по окружности радиусом R с частотой обращения ν. Как нужно изменить частоту обращения, чтобы при увеличении радиуса окружности в 4 раза центростремительное ускорение точки осталось прежним?

а) увеличить в 2 раза б) уменьшить в 2 раза в) увеличить в 4 раза г) уменьшить в 4 раза

Алгоритм решения

  1. Записать исходные данные.
  2. Определить, что нужно найти.
  3. Записать формулу зависимости центростремительного ускорения от частоты.
  4. Преобразовать формулу зависимости центростремительного ускорения от частоты для каждого из случаев.
  5. Приравнять правые части формул и найти искомую величину.

Решение

Запишем исходные данные:

Центростремительное ускорение определяется формулой:

Найдите угловую скорость материальной точки движущейся по окружности радиусом

Запишем формулы центростремительного ускорения для 1 и 2 случаев соответственно:

Найдите угловую скорость материальной точки движущейся по окружности радиусом

Так как центростремительное ускорение в 1 и 2 случае одинаково, приравняем правые части уравнений:

Найдите угловую скорость материальной точки движущейся по окружности радиусом

Произведем сокращения и получим:

Найдите угловую скорость материальной точки движущейся по окружности радиусом

Найдите угловую скорость материальной точки движущейся по окружности радиусом

Найдите угловую скорость материальной точки движущейся по окружности радиусом

Это значит, чтобы центростремительное ускорение осталось неизменным после увеличения радиуса окружности в 4 раза, частота должна уменьшиться вдвое. Верный ответ: «б».

pазбирался: Алиса Никитина | обсудить разбор | оценить

Видео:Урок 44. Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.Скачать

Урок 44. Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.

Угловая скорость.

Угловой скоростью называется величина, численно равная скорости точек, расположенных от оси на расстоянии единицы длины.

Найдите угловую скорость материальной точки движущейся по окружности радиусом

При вращении тела вокруг неподвижной оси АВ каждая точка тела М описывает окружность, перпендикулярную к оси, центр Р которой лежит на оси.

Скорость точки M направлена нормально к плоскости МАВ в сторону вращения. Равномерное вращение точки характеризуется постоянной угловой скоростью.

Угловой скоростью тела называют отношение угла поворота к интервалу времени, в течение которого совершен этот поворот. Если угловую скорость обозначить через w, то:

Найдите угловую скорость материальной точки движущейся по окружности радиусом

Угловая скорость выражается в радианах в секунду (рад/с).

При равномерном вращении, когда известна угловая скорость в начальный момент времени t0 = 0, можно определить угол поворота тела за время t и тем самым положение точек тела:

За один период (промежуток времени Т, в течение которого тело совершает один оборот по окружности) угол поворота φ равен рад: = wT, откуда:

Связь угловой скорости с периодом Т и частотой вращения ν выражается соотношением:

Найдите угловую скорость материальной точки движущейся по окружности радиусом

А связь между линейной и угловой скоростями определяется соотношением:

Видео:угловая СКОРОСТЬ формула угловое УСКОРЕНИЕ 9 классСкачать

угловая СКОРОСТЬ формула угловое УСКОРЕНИЕ 9 класс

I. Механика

Видео:КРИВОЛИНЕЙНОЕ ДВИЖЕНИЕ - Угловое Перемещение, Угловая Скорость, Центростремительное УскорениеСкачать

КРИВОЛИНЕЙНОЕ ДВИЖЕНИЕ - Угловое Перемещение, Угловая Скорость, Центростремительное Ускорение

Тестирование онлайн

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным, оно является равноускоренным.

Видео:Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорениеСкачать

Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорение

Угловая скорость

Выберем на окружности точку 1. Построим радиус. За единицу времени точка переместится в пункт 2. При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Найдите угловую скорость материальной точки движущейся по окружности радиусомНайдите угловую скорость материальной точки движущейся по окружности радиусом Найдите угловую скорость материальной точки движущейся по окружности радиусом

Видео:Лекция 6.5 | Нормальное и тангенциальное ускорение | Александр Чирцов | ЛекториумСкачать

Лекция 6.5 | Нормальное и тангенциальное ускорение | Александр Чирцов | Лекториум

Период и частота

Период вращения T — это время, за которое тело совершает один оборот.

Частота вращение — это количество оборотов за одну секунду.

Найдите угловую скорость материальной точки движущейся по окружности радиусом Найдите угловую скорость материальной точки движущейся по окружности радиусом

Частота и период взаимосвязаны соотношением

Найдите угловую скорость материальной точки движущейся по окружности радиусом Найдите угловую скорость материальной точки движущейся по окружности радиусом

Связь с угловой скоростью

Найдите угловую скорость материальной точки движущейся по окружности радиусом Найдите угловую скорость материальной точки движущейся по окружности радиусом

Видео:Движение тела по окружности с постоянной по модулю скоростью | Физика 9 класс #18 | ИнфоурокСкачать

Движение тела по окружности с постоянной по модулю скоростью | Физика 9 класс #18 | Инфоурок

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.

Найдите угловую скорость материальной точки движущейся по окружности радиусом

Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено — это есть период T. Путь, который преодолевает точка — это есть длина окружности.

Найдите угловую скорость материальной точки движущейся по окружности радиусом Найдите угловую скорость материальной точки движущейся по окружности радиусом

Видео:3. Кинематика материальной точки. Угловые величиныСкачать

3. Кинематика материальной точки. Угловые величины

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

Найдите угловую скорость материальной точки движущейся по окружности радиусомНайдите угловую скорость материальной точки движущейся по окружности радиусом Найдите угловую скорость материальной точки движущейся по окружности радиусом

Используя предыдущие формулы, можно вывести следующие соотношения

Найдите угловую скорость материальной точки движущейся по окружности радиусом

Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Видео:угловая и линейная скоростьСкачать

угловая и линейная скорость

Вращение Земли

Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

Видео:Урок 47. Неравномерное движение по окружности. Тангенциальное ускорениеСкачать

Урок 47. Неравномерное движение по окружности. Тангенциальное ускорение

Связь со вторым законом Ньютона

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

Найдите угловую скорость материальной точки движущейся по окружности радиусом

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Видео:Рассмотрение темы: "Тангенциальное, нормальное и полное ускорение"Скачать

Рассмотрение темы: "Тангенциальное, нормальное и полное ускорение"

Как вывести формулу центростремительного ускорения

Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна vA и vB соответственно. Ускорение — изменение скорости за единицу времени. Найдем разницу векторов.

Найдите угловую скорость материальной точки движущейся по окружности радиусом

Разница векторов есть Найдите угловую скорость материальной точки движущейся по окружности радиусом. Так как Найдите угловую скорость материальной точки движущейся по окружности радиусом, получим

Найдите угловую скорость материальной точки движущейся по окружности радиусом

Видео:Вращательное движение. 10 класс.Скачать

Вращательное движение. 10 класс.

Движение по циклоиде*

Найдите угловую скорость материальной точки движущейся по окружности радиусом

В системе отсчета, связанной с колесом, точка равномерно вращается по окружности радиуса R со скоростью Найдите угловую скорость материальной точки движущейся по окружности радиусом, которая изменяется только по направлению. Центростремительное ускорение точки направлено по радиусу к центру окружности.

Теперь перейдем в неподвижную систему, связанную с землей. Полное ускорение точки А останется прежним и по модулю, и по направлению, так как при переходе от одной инерциальной системы отсчета к другой ускорение не меняется. С точки зрения неподвижного наблюдателя траектория точки А — уже не окружность, а более сложная кривая (циклоида), вдоль которой точка движется неравномерно.

Мгновенная скорость определяется по формуле Найдите угловую скорость материальной точки движущейся по окружности радиусом

📸 Видео

Линейная и угловая скорости при равномерном движении по окружностиСкачать

Линейная и угловая скорости при равномерном движении по окружности

Лекция 10. Угловая скорость и угловое ускорение │Физика с нуляСкачать

Лекция 10. Угловая скорость и угловое ускорение │Физика с нуля

Ускорение при равномерном движении по окружностиСкачать

Ускорение при равномерном движении по окружности

Движение материальной точки по окружности | Физика ЕГЭ, ЦТСкачать

Движение материальной точки по окружности | Физика ЕГЭ, ЦТ

9 класс урок №10 Центростремительное ускорениеСкачать

9 класс урок №10  Центростремительное ускорение

Физика 10 класс (Урок№4 - Равномерное движение точки по окружности.)Скачать

Физика 10 класс (Урок№4 - Равномерное движение точки по окружности.)
Поделиться или сохранить к себе: