Математика | 5 — 9 классы
Найдите радиус окружности, вписанной в квадрат, пириметр котрого равен 6.
Полученное разделить на 2.
На странице вопроса Найдите радиус окружности, вписанной в квадрат, пириметр котрого равен 6? из категории Математика вы найдете ответ для уровня учащихся 5 — 9 классов. Если полученный ответ не устраивает и нужно расшить круг поиска, используйте удобную поисковую систему сайта. Можно также ознакомиться с похожими вопросами и ответами других пользователей в этой же категории или создать новый вопрос. Возможно, вам будет полезной информация, оставленная пользователями в комментариях, где можно обсудить тему с помощью обратной связи.
А) 39 б) 623 в) 5893 Здесь можно выбрать множество таких вариантов.
1)60 * , (24 / 100) = 36 / 25 2)36 / 25 * 4 = 144 / 25 = 5 19 / 25 3)60 — 5 19 / 25 = 54 6 / 25.
54км = 2 процента следовательно 5400 делим на 2 получаем 2700км вот ответ.
Время будет составлять 10 ч 25 мин.
Всего — 38 гр. Белых — ? Гр. Подберёзовиков — ? В 4 раза больше чем белых. Подосиновиков — ? Гр. Подберёзовиков и подосиновиков — 34 гр. 1) 38 — 34 = 4 (гр) — Белых 2)4 * 4 = 16 (гр) — Подберёзовиков 3)34 — 16 = 18(гр) — Подосиновиков Ответ : Б..
17х + 18х = 700. 39х + 33х = 432. 41у — 17у = 480 35х = 700. 72х = 432. 24у = 480 Х = 700 : 35. Х = 432 : 72. У = 480 : 24 Х = 20. Х = 6. У = 20 82z — 57z = 575 25z = 575 Z = 575 : 25 Z = 23 Пожалуйста сделай лучшим.
Вот. Это ответ. Надеюсь разберешься.
Гале 8 лет Полине 6 лет Васе 5 лет Ане 12 лет Степану 9 лет Борису 11 лет.
Y = (lnx + 1) ^ 2 * cos2x y` = ((lnx + 1) ^ 2)’ * cos2x + (lnx + 1) ^ 2 * (cos2x)` ((lnx + 1) ^ 2)’ = ((lnx + 1) ^ 2)’ * (lnx + 1)` = (2 + 2lnx) / x cos2x` = 2sin2x y` = ((lnx + 1) ^ 2)’ * cos2x + (lnx + 1) ^ 2 * (cos2x)` = cos2x(2 + 2lnx) / x — sin2..
15см3мм = 153мм 2см8мм = 28 мм 153мм — 28мм = 125мм 125мм = 0, 125м.
- Квадрат. Онлайн калькулятор
- Свойства квадрата
- Диагональ квадрата
- Окружность, вписанная в квадрат
- Формула вычисления радиуса вписанной окружности через сторону квадрата
- Формула вычисления сторон квадрата через радиус вписанной окружности
- Окружность, описанная около квадрата
- Формула радиуса окружности описанной вокруг квадрата
- Формула стороны квадрата через радиус описанной около квадрата окружности
- Периметр квадрата
- Признаки квадрата
- Онлайн калькулятор периметра вписанного в круг квадрата. Как узнать периметр вписанного в круг квадрата.
- 📸 Видео
Видео:Задача 6 №27913 ЕГЭ по математике. Урок 131Скачать
Квадрат. Онлайн калькулятор
С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ квадрата, радиус вписанной в квадрат окружности, радиус описанной вокруг квадрата окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.
Определение 1. Квадрат − это четырехугольник, у которого все углы равны и все стороны равны (Рис.1):
Можно дать и другие определение квадрата.
Определение 2. Квадрат − это прямоугольник, у которого все стороны равны.
Определение 3. Квадрат − это ромб, у которого все углы прямые (или равны).
Видео:Задача 6 №27910 ЕГЭ по математике. Урок 130Скачать
Свойства квадрата
- Длины всех сторон квадрата равны.
- Все углы квадрата прямые.
- Диагонали квадрата равны.
- Диагонали пересекаются под прямым углом.
- Диагонали квадрата являются биссектрисами углов.
- Диагонали квадрата точкой пересечения делятся пополам.
Изложеннные свойства изображены на рисунках ниже:
Видео:15 задание треугольники огэ по математике / маттаймСкачать
Диагональ квадрата
Определение 4. Диагональю квадрата называется отрезок, соединяющий несмежные вершины квадрата.
На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. У квадрата две диагонали.
Для вычисления длины диагонали воспользуемся теоремой Пифагора:
. | (1) |
Из равенства (1) найдем d:
. | (2) |
Пример 1. Сторона квадрата равна a=53. Найти диагональ квадрата.
Решение. Для нахождения диагонали квадрата воспользуемся формулой (2). Подставляя a=53 в (2), получим:
Ответ:
Видео:Задание 16 ОГЭ по математике. Две окружности одна описана около квадрата, другая вписана в него.Скачать
Окружность, вписанная в квадрат
Определение 5. Окружность называется вписанной в квадрат, если все стороны касаются этого квадрата (Рис.3):
Видео:Сторона квадрата равна 56. Найдите радиус окружности, вписанной в этот квадрат.Скачать
Формула вычисления радиуса вписанной окружности через сторону квадрата
Из рисунка 3 видно, что диаметр вписанной окружности равен стороне квадрата. Следовательно, формула вычисления радиуса вписанной окружности через сторону квадрата имеет вид:
(3) |
Пример 2. Сторона квадрата равна a=21. Найти радиус вписанной окружности.
Решение. Для нахождения радиуса списанной окружности воспользуемся формулой (3). Подставляя a=21 в (3), получим:
Ответ:
Видео:Задача 6 №27934 ЕГЭ по математике. Урок 148Скачать
Формула вычисления сторон квадрата через радиус вписанной окружности
Из формулы (3) найдем a. Получим формулу вычисления стороны квадрата через радиус вписанной окружности:
(4) |
Пример 3. Радиус вписанной в квадрат окружности равен r=12. Найти сторону квадрата.
Решение. Для нахождения стороны квадраиа воспользуемся формулой (4). Подставляя r=12 в (4), получим:
Ответ:
Видео:Задача 6 №27909 ЕГЭ по математике. Урок 129Скачать
Окружность, описанная около квадрата
Определение 6. Окружность называется описанной около квадрата, если все вершины квадрата находятся на этой окружности (Рис.4):
Видео:Задача 6 №27932 ЕГЭ по математике. Урок 146Скачать
Формула радиуса окружности описанной вокруг квадрата
Выведем формулу вычисления радиуса окружности, описанной около квадрата через сторону квадрата.
Обозначим через a сторону квадрата, а через R − радиус описанной около квадрата окружности. Проведем диагональ BD (Рис.4). Треугольник ABD является прямоугольным треугольником. Тогда из теоремы Пифагора имеем:
(5) |
Из формулы (5) найдем R:
(6) |
или, умножая числитель и знаменатель на , получим:
. | (7) |
Пример 4. Сторона квадрата равна a=4.5. Найти радиус окружности, описанной вокруг квадрата.
Решение. Для нахождения радиуса окружности описанной вокруг квадрата воспользуемся формулой (7). Подставляя a=4.5 в (7), получим:
Ответ:
Видео:Площадь круга. Математика 6 класс.Скачать
Формула стороны квадрата через радиус описанной около квадрата окружности
Выведем формулу вычисления стороны квадрата, через радиус описанной около квадрата окружности.
Из формулы (1) выразим a через R:
. | (8) |
Пример 5. Радиус описанной вокруг квадрата окружности равен Найти сторону квадрата.
Решение. Для нахождения стороны квадрата воспользуемся формулой (8). Подставляя в (8), получим:
Ответ:
Видео:Задача 6 №27917 ЕГЭ по математике. Урок 134Скачать
Периметр квадрата
Периметр квадрата − это сумма всех его сторон. Обозначается периметр латинской буквой P.
Поскольку стороны квадрата равны, то периметр квадрата вычисляется формулой:
(9) |
где − сторона квадрата.
Пример 6. Сторона квадрата равен . Найти периметр квадрата.
Решение. Для нахождения периметра квадрата воспользуемся формулой (9). Подставляя в (9), получим:
Ответ:
Видео:Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математикеСкачать
Признаки квадрата
Признак 1. Если в четырехугольнике все стороны равны и один из углов четырехугольника прямой, то этот четырехугольник является квадратом.
Доказательство. По условию, в четырехугольнике противоположные стороны равны, то этот четырехугольник праллелограмм (признак 2 статьи Параллелограмм). В параллелограмме противоположные углы равны. Следовательно напротив прямого угла находится прямой угол. Тогда сумма остальных двух углов равна: 360°-90°-90°=180°, но поскольку они также являются противоположными углами, то они также равны и каждый из них равен 90°. Получили, что все углы четырехугольника прямые и, по определению 1, этот четырехугольник является квадратом.
Признак 2. Если в четырехугольнике диагонали равны, перпендикулярны и точкой пересечения делятся пополам, то такой четырехугольник является квадратом (Рис.5).
Доказательство. Пусть в четырехугольнике ABCD диагонали пересекаются в точке O и пусть
(10) |
Так как AD и BC перпендикулярны, то
(11) |
Из (10) и (11) следует, что треугольники OAB, OBD, ODC, OCA равны (по двум сторонам и углу между ними (см. статью на странице Треугольники. Признаки равенства треугольников)). Тогда
(12) |
Эти реугольники также равнобедренные. Тогда
(13) |
Из (13) следует, что
(14) |
Равенства (12) и (14) показывают, что четырехугольник ABCD является квадратом (определение 1).
Видео:САМЫЙ СТРАННЫЙ ПРИМЕР 3 задания проф. ЕГЭ по математикеСкачать
Онлайн калькулятор периметра вписанного в круг квадрата. Как узнать периметр вписанного в круг квадрата.
Для того что бы найти периметр вписанного в круг квадрата, нам необходимо узнать длину ребра этого квадрата. Для этого нам необходимо разделить квадрат по диагонали на два равнобедренных треугольника, при этом основание у этих треугольников будет равно диаметру круга.
Следующим действиям мы должны определиться с известной нам величиной круга в которую вписан квадрат, а именно нам должна быть известна:
- либо площадь круга, обозначаемая буквой S,
- либо периметр круга, обозначаемый буквой P,
- либо радиус круга, обозначаемый буквой R,
- либо диаметр круга, обозначаемый буквой D.
Начнем по порядку, мы имеем равнобедренный прямоугольный треугольник и для того, что бы узнать длину его ребер нам необходимо воспользоваться теоремой Пифагора исходя из которой
Теперь для того что бы найти длину ребра треугольника (которое равно стороне нашего квадрата) нам необходимо узнать длину основания треугольника, которое равно диаметру круга
1. Если нам известна площадь круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:
2. Если нам известна длина круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:
3. Если нам известен радиус круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:
Соответственно если мы знаем диаметр круга который равен основанию треугольника полученного путем разделения квадрата на две части по диагонали,
мы можем узнать длину сторон квадрата используя теорему Пифагора
после того как мы получили значение длины стороны вписанного квадрата равную a, для получения его периметра нам необходимо полученное значение умножить на 4.
📸 Видео
Задание 16 Часть 3Скачать
Задание 16 ОГЭ по математике. Окружность описана около квадратаСкачать
Задача 6 №27859 ЕГЭ по математике. Урок 104Скачать
2202 Периметр треугольника равен 6 а радиус вписанной окружности равен 2Скачать
Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Задача 6 №27923 ЕГЭ по математике. Урок 140Скачать
Задача 6 №27862 ЕГЭ по математике. Урок 105Скачать
Найти площадь квадрата описанного около окружности радиуса 19Скачать