Найдите абсциссу точки касания в которой касательная к графику функции параллельна прямой y 3x

Задание №902

Видео:Дан график производной Найти абсциссу точки в которой касательная к графику функции парал-на оси ХСкачать

Дан график производной Найти абсциссу точки в которой касательная к графику функции парал-на оси Х

Условие

На рисунке изображён график y=f'(x) — производной функции f(x) . Найдите абсциссу точки, в которой касательная к графику функции y=f(x) параллельна прямой y=3x+2 или совпадает с ней.

Найдите абсциссу точки касания в которой касательная к графику функции параллельна прямой y 3x

Видео:№ 40130 РешуЕгэ найти абсциссу точки, в которой касательная к графику функции параллельна прямойСкачать

№ 40130 РешуЕгэ  найти абсциссу точки, в которой касательная к графику функции параллельна прямой

Решение

Пусть x_0 — абсцисса точки, в которой касательная к графику функции y=f(x) параллельна прямой y=3x+2 или совпадает с ней. Тогда значение производной y=f'(x) в точке x_0 равно 3 , так как угловой коэффициент касательной y=3x+2 равен 3 .

Но из графика видно, что f'(x) = 3 в единственной точке x_0=-1 .

Действительно, прямая y=3 пересекает график функции y=f'(x) в единственной точке (-1; 3), абсцисса которой равна −1 .

Видео:Прямая y=8x+11 параллельна касательной к графику функции y=x^2+7x-7. Найдите абсциссу точки касания.Скачать

Прямая y=8x+11 параллельна касательной к графику функции y=x^2+7x-7. Найдите абсциссу точки касания.

Найдите абсциссу точки касания в которой касательная к графику функции параллельна прямой y 3x

БАЗА ЗАДАНИЙ

Задание № 6. Производная функции.

51. На рисунке изображён график y=f ‘(x) — производной функции f(x), определённой на интервале (− 4; 6). Найдите абсциссу точки, в которой касательная к графику функции y=f(x) параллельна прямой y=3x или совпадает с ней.

Найдите абсциссу точки касания в которой касательная к графику функции параллельна прямой y 3x

52. На рисунке изображён график y=F(x) одной из первообразных некоторой функции f(x) и отмечены десять точек на оси абсцисс . В скольких из этих точек функция f(x) положительна?

Найдите абсциссу точки касания в которой касательная к графику функции параллельна прямой y 3x

53. На рисунке изображён график y=F(x) одной из первообразных некоторой функции f(x) и отмечены восемь точек на оси абсцисс: x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 . В скольких из этих точек функция f(x) отрицательна?

Найдите абсциссу точки касания в которой касательная к графику функции параллельна прямой y 3x

54. На рисунке изображён график y=F(x) одной из первообразных некоторой функции f(x) и отмечены десять точек на оси абсцисс. В скольких из этих точек функция f(x) положительна?

Найдите абсциссу точки касания в которой касательная к графику функции параллельна прямой y 3x

55. На рисунке изображён график y=F(x) одной из первообразных некоторой функции f(x), определённой на интервале (− 7; 5). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [− 5; 2].

Найдите абсциссу точки касания в которой касательная к графику функции параллельна прямой y 3x

56. На рисунке изображён график y=F(x) одной из первообразных некоторой функции f(x), определённой на интервале (− 8; 7). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [− 5; 5].

Найдите абсциссу точки касания в которой касательная к графику функции параллельна прямой y 3x

57. На рисунке изображён график y=F(x) одной из первообразных некоторой функции f(x), определённой на интервале (1;13). Пользуясь рисунком, определите количество решений уравнения f (x)=0 на отрезке [2;11].

Найдите абсциссу точки касания в которой касательная к графику функции параллельна прямой y 3x

58. На рисунке изображён график некоторой функции y=f(x) (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(−1)−F(−8), где F(x) — одна из первообразных функции f(x).

Найдите абсциссу точки касания в которой касательная к графику функции параллельна прямой y 3x

59. На рисунке изображён график некоторой функции y=f(x) (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(−1)−F(−9), где F(x) — одна из первообразных функции f(x).

Найдите абсциссу точки касания в которой касательная к графику функции параллельна прямой y 3x

60. На рисунке изображён график некоторой функции y=f(x). Функция

Найдите абсциссу точки касания в которой касательная к графику функции параллельна прямой y 3x

— одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.

Найдите абсциссу точки касания в которой касательная к графику функции параллельна прямой y 3x

61. На рисунке изображён график некоторой функции y=f(x). Функция

Найдите абсциссу точки касания в которой касательная к графику функции параллельна прямой y 3x

— одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.

Найдите абсциссу точки касания в которой касательная к графику функции параллельна прямой y 3x

62. Прямая y=7x-5 параллельна касательной к графику функции y=x 2 +6x-8. Найдите абсциссу точки касания.

63. Прямая y=4x11 является касательной к графику функции y= x 3 +7x 2 +7x-6. Найдите абсциссу точки касания.

64. Прямая y=3x5 является касательной к графику функции y=x 2 +7x+c. Найдите c .

65. Прямая y=3x+1 является касательной к графику функции y=ax 2 +2x+3. Найдите a .

66. Прямая y=5x+8 является касательной к графику функции y=28x 2 +bx+15. Найдите b, учитывая, что абсцисса точки касания больше 0.

67. Материальная точка движется прямолинейно по закону

Найдите абсциссу точки касания в которой касательная к графику функции параллельна прямой y 3x

где x — расстояние от точки отсчёта в метрах, t — время в секундах, измеренное с момента начала движения. В какой момент времени (в секундах) её скорость была равна 96 м/с?

68. Материальная точка движется прямолинейно по закону

Найдите абсциссу точки касания в которой касательная к графику функции параллельна прямой y 3x

где x — расстояние от точки отсчёта в метрах, t — время в секундах, измеренное с момента начала движения. В какой момент времени (в секундах) её скорость была равна 48 м/с?

69. Материальная точка движется прямолинейно по закону

Найдите абсциссу точки касания в которой касательная к графику функции параллельна прямой y 3x

где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. Найдите ее скорость (в м/с) в момент времени t=6 с.

70. Материальная точка движется прямолинейно по закону

Найдите абсциссу точки касания в которой касательная к графику функции параллельна прямой y 3x

где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. Найдите ее скорость (в м/с) в момент времени t=3 с.

Видео:Прямая y=7x-5 параллельна касательной к графику функции y=x^2+6x-8 Найдите абсциссу точки касания.Скачать

Прямая y=7x-5 параллельна касательной к графику функции y=x^2+6x-8  Найдите абсциссу точки касания.

«решение заданий В-7» егэ

Видео:Прямая y=3x+4 является касательной к графику функции 〖y=3x〗^2-3x+c Найдите c.Скачать

Прямая y=3x+4 является касательной к графику функции 〖y=3x〗^2-3x+c Найдите c.

«Календарь счастливой жизни:
инструменты и механизм работы
для достижения своих целей»

Сертификат и скидка на обучение каждому участнику

Найдите абсциссу точки касания в которой касательная к графику функции параллельна прямой y 3x

Найдите абсциссу точки касания в которой касательная к графику функции параллельна прямой y 3x

Видео:Задание 7 ЕГЭ по математикеСкачать

Задание 7 ЕГЭ по математике

«Управление общеобразовательной организацией:
новые тенденции и современные технологии»

Свидетельство и скидка на обучение каждому участнику

Описание презентации по отдельным слайдам:

Решение заданий В8 по материалам открытого банка задач ЕГЭ по математике

Прямая у = 4х + 11 параллельна касательной к графику функции у = х2 + 8х + 6. Найдите абсциссу точки касания. Решение: Если прямая параллельна касательной к графику функции в какой-то точке (назовем ее хо), то ее угловой коэффициент (в нашем случае k = 4 из уравнения у = 4х +11) равен значению производной функции в точке хо: k = f ′(xo) = 4 Производная функции f ′(x) = (х2 + 8х + 6)′ = 2x + 8. Значит, для нахождения искомой точки касания необходимо, чтобы 2хo + 8 = 4, откуда хо = – 2. Ответ: – 2. №1

Прямая у = 3х + 11 является касательной к графику функции у = x3 − 3×2 − 6x + 6. Найдите абсциссу точки касания. Решение: Заметим, что если прямая является касательной к графику, то ее угловой коэффициент (k = 3) должен быть равен производной функции в точке касания, откуда имеем Зх2 − 6х − 6 = 3, то есть Зх2 − 6х − 9 = 0 или х2 − 2х − 3 = 0. Это квадратное уравнение имеет два корня: −1 и 3. Таким образом есть две точки, в которых касательная к графику функции у = х3 − Зх2 − 6х + 6 имеет угловой коэффициент, равный 3. Для того чтобы определить, в какой из этих двух точек прямая у = 3х + 11 касается графика функции, вычислим значения функции в этих точках и проверим, удовлетворяют ли они уравнению касательной. Значение функции в точке −1 равно у(−1) = −1 − 3 + 6 + 6 = 8, а значение в точке 3 равно у(3) = 27 − 27 − 18 + 6 = −12. Заметим, что точка с координатами (−1; 8) удовлетворяет уравнению касательной, так как 8 = −3 + 11. А вот точка (3; −12) уравнению касательной не удовлетворяет, так как −12 ≠ 9 + 11. Значит, искомая абсцисса точки касания равна −1. Ответ: −1. №2

На рисунке изображен график у = f ′(x) – производной функции f(x), определенной на интервале (–10; 8). В какой точке отрезка [–8; –4] функция f(x) принимает наименьшее значение. Решение: Заметим, что на отрезке [–8; –4] производная функции отрицательна, значит, сама функция убывает, а значит, наименьшее значение на этом отрезке она принимает на правом конце отрезка, то есть в точке –4. Ответ: –4. №3 – у = f ′(x) f(x)

На рисунке изображен график у = f ′(x) – производной функции f(x), определенной на интервале (–8; 8). Найдите количество точек экстремума функции f(x), принадлежащих отрезку [– 6; 6]. Решение: В точке экстремума производная функции равна 0 либо не существует. Видно, что таких точек принадлежащих отрезку [–6; 6] три. При этом в каждой точке производная меняет знак либо с «+» на «–», либо с «–» на «+». Ответ: 3. №4 + – – + у = f ′(x)

Решение: Заметим, что на интервале (–4; 8) производная в точке хо = 4 обращается в 0 и при переходе через эту точку меняет знак производной с «–» на «+», точка 4 и есть искомая точка экстремума функции на заданном интервале. №5 На рисунке изображен график у = f ′(x) – производной функции f(x), определенной на интервале (–8; 10). Найдите точку экстремума функции f(x) на интервале (– 4; 8). . Ответ: 4. – + у = f ′(x)

№6 На рисунке изображен график у = f ′(x) – производной функции f(x), определенной на интервале (–8; 8). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой у = –2х + 2 или совпадает с ней. Ответ: 4. Решение: Если касательная к графику функции f(x) параллельна прямой у = –2x + 2 или совпадает с ней, то ее угловой коэффициент k = –2, а значит нам нужно найти количество точек, в которых производная функции f ′(x) = –2. Для этого на графике производной проведем прямую у = –2, и посчитаем количество точек графика производной, лежащих на этой линии. Таких точек 4. у = f ′(x) у = –2

№7 На рисунке изображен график функции у = f(x), определенной на интервале (–6; 5). Определите количество целых точек, в которых производная функции отрицательна. Ответ: 6. Решение: Заметим, что производная функции отрицательна, если сама функция f(x) убывает, а значит, необходимо найти количество целых точек, входящих в промежутки убывания функции. Таких точек 6: х = −4, х = −3, х = −2, х = −1, х = 0, х = 3. –2 –1 –3 –4 0 3 у = f(x) –6 5 у х

0 у = f(x) –6 6 у х 2 4 6 3 5 1 №8 На рисунке изображен график функции у = f(x), определенной на интервале (–6; 6). Найдите количество точек, в которых касательная к графику функции параллельна прямой у = –5. Ответ: 6. Решение: Прямая у = −5 горизонтальная, значит, если касательная к графику функции ей параллельна, то она тоже горизонтальна. Следовательно, угловой коэффициент в искомых точках k = f ′(х) = 0. В нашем случае – это точки экстремума. Таких точек 6. у = –5 –5

№9 На рисунке изображен график у = f(x) – производной функции f(x), определенной на интервале (–7; 5) и касательная к нему в точке с абсциссой хо. Найдите значение производной функции f(x) в точке хо. Ответ: 1,25. Решение: Значение производной функции f ′(хo) = tg α = k равно угловому коэффициенту касательной, проведенной к графику этой функции в данной точке. В нашем случае k > 0, так как α – острый угол (tg α > 0). Чтобы найти угловой коэффициент, выберем две точки А и В, лежащие на касательной, абсциссы и ординаты которых − целые числа. Теперь определим модуль углового коэффициента. Для этого построим треугольник ABC. tg α = ВС : АС = 5 : 4 = 1,25 у = f(x) 4 А В С 5 хо α α

180°− α №10 На рисунке изображен график функции у = f(x), определенной на интервале (–10; 2) и касательная к нему в точке с абсциссой хо. Найдите значение производной функции f(x) в точке хо. Ответ: −0,75. Решение: Значение производной функции f ′(хo) = tg α = k равно угловому коэффициенту касательной, проведенной к графику этой функции в данной точке. В нашем случае k 12 слайд Найдите абсциссу точки касания в которой касательная к графику функции параллельна прямой y 3x

. На рисунке изображен график производной у = f ′(x) –функции f(x), определенной на интервале (–11; 11). Найдите количество точек максимума функции f(x) на отрезке [−10; 10]. у х у = f ′(x) 0 Решение: В точке экстремума производная функции равна 0 либо не существует. Видно, что таких точек принадлежащих отрезку [−10; 10] пять. В точках х2 и х4 производная меняет знак с «+» на «−» – это точки максимума. – + – + – + х1 х2 х3 х4 х5 max max Ответ: 2. f(x) –10 10 №11

Прямая у = 4х – 4 является касательной к графику функции ах2 + 34х + 11. Найдите а. Решение: Производная функции в точке касания должна совпадать с угловым коэффициентом прямой. Откуда, если за хo принять абсциссу точки касания, имеем: 2ахo + 34 = 4. То есть ахo = –15. Найдем значение исходной функции в точке касания: ахo2 + 34хo + 11 = –15xo + 34хo + 11 = 19хo + 11. Так как прямая у = 4х – 4 – касательная, имеем: 19хo + 11 = 4хo – 4, откуда хo = –1. А значит a = 15. Ответ: 15. №12

Прямая у = – 4х – 5 является касательной к графику функции 9х2 + bх + 20. Найдите b, учитывая, что абсцисса точки касания больше 0. Решение. Если хо – абсцисса точки касания, то 18xo+ b = –4, откуда b = – 4 – 18хо. Аналогично задаче №12 найдем хо: 9xo2 + (– 4 – 18хо) xo + 20 = – 4хo – 5, 9xo2 – 4xo – 18хо2 + 20 + 4хo + 5 = 0, – 9xo2 + 25 = 0, хо2 = 25/9. Откуда xo = 5/3 или xo = –5/3. Условию задачи соответствует только положительный корень, значит xo = 5/3, следовательно b = – 4 – 18 ∙ 5/3, имеем b = –34. Ответ: –34. №13

Прямая у = 2х – 6 является касательной к графику функции х2 + 12х + с. Найдите с. Решение. Аналогично предыдущим задачам обозначим абсциссу точки касания хо и приравняем значение производной функции в точке хо угловому коэффициенту касательной. 2хо + 12 = 2, откуда xo = –5. Значение исходной функции в точке –5 равно: 25 – 60 + с = с – 35, значит с – 35 = 2 ∙ (–5) – 6, откуда с = 19. Ответ: 19. №14

Материальная точка движется прямолинейно по закону x(t) = 0,5t2 – 2t – 6, где x – расстояние от точки отсчета в метрах, t – время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t = 6с. Решение. Так как мгновенная скорость точки в момент времени to, прямолинейного движения, совершаемого по закону х = х(t), равна значению производной функции х npu t = to, искомая скорость будет равна x ′(t) = 0,5 ∙ 2t – 2 = t – 2, x ′(6) = 6 – 2 = 4 м/с. Ответ: 4. №15

Материальная точка движется прямолинейно по закону x(t) = 0,5t2 – 2t – 22, где x – расстояние от точки отсчета в метрах, t – время в секундах, измеренное с начала движения. В какой момент времени (в секундах) ее скорость была равна 4 м/с? Решение. Так как мгновенная скорость точки в момент времени to, прямолинейного движения, совершаемого по закону х = х(t), равна значению производной функции х npu t = to, искомая скорость будет равна x ′(to) = 0,5 ∙ 2to – 2 = to – 2, Т.к. по условию, x ′(to) = 4, то to – 2 = 4, откуда to = 4 + 2 = 6 м/с. Ответ: 6. №16

На рисунке изображен график функции у = f(x), определенной на интервале (–8; 6). Найдите сумму точек экстремума функции f(x). Решение: Точки экстремума – это точки минимума и максимума. Видно, что таких точек принадлежащих промежутку (–8; 6) пять. Найдем сумму их абсцисс: -6 + (-4) + (-2) + 2 + 4 = 6. Ответ: 6. №17 у = f ′(x)

На рисунке изображен график производной у = f ′(x) – функции f(x), определенной на интервале (–10; 8). Найдите промежутки возрастания функции f(x). В ответе укажите сумму целых точек, входящих в эти промежутки. у = f ′(x) + + Решение: Заметим, что функция f(x) возрастает, если производная функции положительна; а значит, необходимо найти сумму целых точек, входящих в промежутки возрастания функции. Таких точек 7: х = −3, х = −2, х = 3, х = 4, х = 5, х = 6, х = 7. Их сумма: −3+(−2)+3+4+5+6+7 = 20 7 5 3 -3 Ответ: 20.

💥 Видео

Прямая y=6х-5 касательная к графику функции y=3х^2+bх+7 Найдите b ( абсцисса точки касания больше 0)Скачать

Прямая y=6х-5 касательная к графику функции y=3х^2+bх+7 Найдите b ( абсцисса точки касания больше 0)

Задача 7 ЕГЭ по математике #2Скачать

Задача 7 ЕГЭ по математике #2

Прямая y=3х+4 является касательной к графику функции y=3х^2-3х+с. Найдите с. Задание 7 ЕГЭ профильСкачать

Прямая y=3х+4 является касательной к  графику функции y=3х^2-3х+с. Найдите с. Задание 7 ЕГЭ профиль

Прямая y=х+3 является касательной к графику функции y=ах^2+3х-2 Найдите а.Задание 6 ЕГЭ профиль 2022Скачать

Прямая y=х+3 является касательной к графику функции y=ах^2+3х-2 Найдите а.Задание 6 ЕГЭ профиль 2022

Прямая y = 3x + 1 является касательной к графику функции f(x)= ax в квадрате + 2x + 3. Найдите a.Скачать

Прямая y = 3x + 1 является касательной к графику функции f(x)= ax в квадрате + 2x + 3. Найдите a.

Задача 7 ЕГЭ по математикеСкачать

Задача 7 ЕГЭ по математике

Прямая y=-4x-11 является касательной к графику функции y=x^3+7x^2+7x-6Найдите абсциссу точки касанияСкачать

Прямая y=-4x-11 является касательной к графику функции y=x^3+7x^2+7x-6Найдите абсциссу точки касания

ЕГЭ 2017 Профильный №7 найти точки, в которых касательная параллельна прямой #7Скачать

ЕГЭ 2017 Профильный №7 найти точки, в которых касательная параллельна прямой #7

Задача 7 ЕГЭ по математике #5Скачать

Задача 7 ЕГЭ по математике #5

10 класс, 43 урок, Уравнение касательной к графику функцииСкачать

10 класс, 43 урок, Уравнение касательной к графику функции

Касательная к графику функции в точке. 10 класс.Скачать

Касательная к графику функции в точке. 10 класс.

ЕГЭ Математика профиль Задание 7 #119973Скачать

ЕГЭ Математика профиль Задание 7 #119973

ЕГЭ 2018 математика профильный уровень #3.18 задача 7🔴Скачать

ЕГЭ 2018 математика профильный уровень #3.18 задача 7🔴

На рис. изображены графики функций f(x)=-3x+13 и g(x)=ax^2+bx+c, кот. пересекаются в точках А и В.Скачать

На рис. изображены графики функций f(x)=-3x+13 и g(x)=ax^2+bx+c, кот. пересекаются в точках А и В.
Поделиться или сохранить к себе: