Метод треугольника в инженерной графике

Способ прямоугольного треугольника

Способ прямоугольного треугольника является одним из тех методов в котором находится действительная величина отрезка или расстояние между двумя точками прямой по двум проекциям. В отличие от отрезков прямых частного положения, проецирующихся хотя бы на одну из плоскостей проекций в натуральную величину, отрезок прямой общего положения на плоскости проекций проецируется с искажением. Для того чтобы найти его натуральную величину, необходимо провести ряд преобразований.

Метод треугольника в инженерной графике

Возьмем прямую общего положения АВ и спроецируем ее на горизонтальную плоскость проекций . Через точку А проведем линию, параллельную плоскости . Таким образом в пространстве получим прямоугольный треугольник , один из катетов которого (AB1) равен длине проекции отрезка, а угол между отрезком и этим катетом является углом наклона заданного отрезка к плоскости проекций.

Для определения натуральной величины отрезка прямой общего положения и углов наклона ее к плоскости проекций на КЧ необходимо построить прямоугольный треугольник: — первый катет этого треугольника равен проекции отрезка на плоскости проекций (обычно прямоугольный треугольник пристраивают к проекции отрезка, однако в некоторых задачах целесообразно прямоугольный треугольник строить в стороне от проекций геометрических объектов); — из проекции любого конца отрезка под прямым углом к проекции отрезка проводится луч, на котором откладывается длина второго катета, равная разности расстояний от концов отрезка до данной плоскости проекций; — гипотенуза полученного таким образом прямоугольного треугольника равна действительной величине заданного отрезка.

Ортогональная проекция отрезка общего положения всегда будет меньше его действительной величины.

Метод треугольника в инженерной графике

Для графического определения на эпюре Монжа действительной величины отрезка или расстояния между двумя точками прямой может быть использован способ прямоугольного треугольника. Где выполняется построение прямоугольного треугольника: — за один его катет принимается горизонтальная (фронтальная, профильная) проекция отрезка; — а за другой катет — разность удаления концов отрезка от горизонтальной (или соответственно фронтальной, профильной) плоскости проекции; — гипотенуза, полученного таким образом, прямоугольного треугольника равна действительной величине заданного отрезка или расстояния между двумя точками прямой.

Графическое определение действительной величины отрезка [AB] или расстояния между двумя точками прямой A и B путем построения прямоугольных треугольников ΔA`B`B0 или ΔA»B»A0.

Метод треугольника в инженерной графике

Используя способ прямоугольного треугольника, можно также решать задачу по построению на эпюре: — проекции отрезка, наперед заданной величины; — проекции расстояния между двумя точками прямой, наперед заданной величины.

Метод треугольника в инженерной графике

Даны проекции равностороннего треугольника ABC(A`B`C`,A»B». ) .
Построить недостающие проекции треугольника.

Метод треугольника в инженерной графике

Построение равностороннего треугольника выполняется с использованием способа прямоугольного треугольника

Другие графические способы определение действительной величины, натурального вида или натуральной величины отрезка, плоской фигуры изложены в статье: Метод преобразования. Определение действительной величины треугольника ΔABC показаны на примере решения двух задач в статье: Графическая работа 3

Способ прямоугольного треугольника применяется в статье графическая работа 1: Графическая работа 1

Если вы искали не Способ прямоугольного треугольника а: Проекции треугольника, нажмите на ссылку.

Построение треугольника в плоскости общего положения смотри: Вращение вокруг следа

Содержание
  1. Определение натуральной величины отрезка
  2. Метод прямоугольного треугольника
  3. Способ параллельного переноса
  4. Поворот вокруг оси
  5. Решение метрических задач в начертательной геометрии с примерами
  6. Решение метрических задач методами преобразовании проекций
  7. Четыре основных задачи преобразовании проекций
  8. Способ вращения
  9. Способ плоскопараллельного перемещения
  10. Способ замены плоскостей проекций
  11. Способ плоскопараллельного перемещения
  12. Способ замены плоскостей проекций
  13. Метрические задачи
  14. Определение расстояний между геометрическими объектами
  15. Перпендикулярность плоскостей
  16. Определение углов между прямой и плоскостью и между двумя плоскостями
  17. Примеры метрических задач
  18. Теорема о проекциях прямого угла
  19. Линии наибольшего наклона плоскости
  20. Перпендикулярность прямой и плоскости
  21. Взаимная перпендикулярность плоскостей
  22. Определение метрических задач
  23. Определение длины отрезка
  24. Определение площади треугольника
  25. Проецирование прямого угла
  26. Перпендикулярность прямых и плоскостей
  27. Перпендикулярность прямой и плоскости
  28. Расстояние от точки до плоскости
  29. Перпендикулярность плоскостей
  30. Определение натуральных величин геометрических элементов
  31. Определение расстояния между геометрическими элементами (образами)
  32. Определение углов наклона геометрических элементов к плоскостям проекций H и V
  33. 🌟 Видео

Видео:Определение натуральной величины треугольника АВС методом замены плоскостей проекцииСкачать

Определение натуральной величины треугольника АВС методом замены плоскостей проекции

Определение натуральной величины отрезка

Если отрезок параллелен плоскости, то он проецируется на неё без искажений. В остальных случаях для нахождения его натуральной величины применяют метод прямоугольного треугольника или способы преобразования ортогональных проекций.

Видео:Нахождение натуральной величины отрезка методом прямоугольного треугольникаСкачать

Нахождение натуральной величины отрезка методом прямоугольного треугольника

Метод прямоугольного треугольника

Сущность данного метода заключается в нахождении гипотенузы прямоугольного треугольника, у которого один катет равен горизонтальной (или фронтальной) проекции отрезка, а величина другого катета представляет собой разность удаления концов отрезка от горизонтальной (или, соответственно, фронтальной) плоскости проекции.

Метод треугольника в инженерной графике

Для того чтобы найти натуральную величину отрезка AB (рисунок выше), строим прямоугольный треугольник A0A’B’. Его первый катет A’B’ – это горизонтальная проекция AB. Второй катет A’A0 равен величине ZA – ZB, то есть разности удаления точек A и B от горизонтальной плоскости П1.

Откладываем A’A0 = ZA – ZB перпендикулярно A’B’. Затем проводим гипотенузу A0B’ треугольника A0A’B’. На рисунке она обозначена красным цветом. Её величина соответствует настоящей длине AB.

Видео:Лекция 1. Точка на прямой. Метод прямоугольного треугольникаСкачать

Лекция 1. Точка на прямой. Метод прямоугольного треугольника

Способ параллельного переноса

Параллельный перенос представляет собой перемещение геометрической фигуры параллельно одной из плоскостей проекций. При этом величина проекции фигуры на эту плоскость не меняется. Например, если перемещать отрезок EF параллельно горизонтальной плоскости П1, то длина его проекции E’F’ не изменится, когда она займет новое положение E’1F’1 (как это показано на рисунке ниже).

Еще одно важное свойство параллельного переноса заключается в том, что при любом перемещении точки параллельно горизонтальной плоскости проекции, её фронтальная проекция движется по прямой, параллельной оси X. Если точка перемещается параллельно фронтальной плоскости, то её горизонтальная проекция движется по прямой, параллельной оси X.

Чтобы определить действительный размер отрезка EF, на свободном месте чертежа строим его новую горизонтальную проекцию E’1F’1 = E’F’ так, чтобы она была параллельна оси X . Затем по линиям связи находим точки E»1 и F»1. Расстояние между ними и есть искомая величина, поскольку мы перенесли EF в положение, параллельное фронтальной плоскости.

Метод треугольника в инженерной графике

Метод параллельного переноса, описанный здесь, иногда называют параллельным перемещением. Посмотреть дополнительные примеры и получить более подробную информацию по данной теме можно в этой статье.

Видео:Определение натуральной величины треугольника АВС методом вращения вокруг горизонтали или фронталиСкачать

Определение натуральной величины треугольника АВС методом вращения вокруг горизонтали или фронтали

Поворот вокруг оси

Для того, чтобы отрезок стал параллелен плоскости проекции и без искажения отразился на ней, он может быть повернут вокруг проецирующей прямой, проходящей через один из его концов.

Определим длину произвольного отрезка MN. Для этого через точку N проводим горизонтально проецирующую прямую i. Вокруг неё поворачиваем MN так, чтобы его проекция M’N’ заняла положение M’1N’1, параллельное оси X.

По линиям связи находим точку M»1. При этом исходим из того, что M» в процессе вращения движется параллельно горизонтальной плоскости.

Точка N не изменит своего положения, так как лежит на оси поворота. Поэтому осталось только соединить N»1 и M»1 искомым отрезком. На рисунке он выделен красным цветом.

Метод треугольника в инженерной графике

Более подробную информацию о решении задач методом поворота вокруг оси вы можете получить, ознакомившись со следующим материалом.

Видео:Пересечение двух плоскостей. Плоскости в виде треугольникаСкачать

Пересечение двух плоскостей. Плоскости в виде треугольника

Решение метрических задач в начертательной геометрии с примерами

Содержание:

К метрическим задачам относятся задачи на определение натуральной величины отрезков, расстояний углов, площадей плоских фигур.

Определение натуральной величины отрезка и углов наклона к плоскостям проекций методом прямоугольною треугольника Натуральная величина отрезка равна гипотенузе прямоугольного треугольника, одним катетом которого является проекция отрезка, а вторым — разность расстояний концов отрезка от той плоскости, на которой ведется построение. При этом угол между гипотенузой и катетом проекций является углом наклона отрезка к той плоскости, ряльной величины выполнено на горизонтальной проекции. Поэтому одним катетом прямоугольного треугольника, является горизонтальная проекцияМетод треугольника в инженерной графике

Метод треугольника в инженерной графике

Если необходимо определить угол наклона отрезка АВ к плоскости Метод треугольника в инженерной графикето построение прямоугольного треугольника ведется на фронтальной проекции.

Видео:Построение натуральной величины треугольника методом вращенияСкачать

Построение натуральной величины треугольника методом вращения

Решение метрических задач методами преобразовании проекций

Положении геометрических образов, при которых расстоянии и углы не искажаются на плоскостях проекций

Метрические характеристики объектов на чертежах не искажаются, если геометрические образы занимают частное положение относительно плоскостей проекций.

Приведем некоторые из них.

1. Прямая проецируется в натуральную величину, если она параллельна плоскости проекций (рисунок 3.2).

Метод треугольника в инженерной графике

Метод треугольника в инженерной графике— угол наклона к плоскостиМетод треугольника в инженерной графике

2. Расстояние от точки до прямой проецируется в натуральную величину, если прямая проецирующая (рисунок 3.3).

Метод треугольника в инженерной графике

3. Расстояние между параллельными прямыми проецируется в натуральную величину, если прямые проецирующие (рисунок 3.4).

Метод треугольника в инженерной графике

4. Расстояние между скрещивающимися прямыми проецируется в натуральную величину, если одна из прямых проецирующая (рисунок 3.5).

Метод треугольника в инженерной графике

5. Угол между плоскостями (двугранный угол) проецируется в натуральную величину, если ребро угла проецирующее (рисунок 3.6).

Метод треугольника в инженерной графике

6. Угол наклона плоскости к плоскости проекций проецируется в натуральную величину, если плоскость проецирующая (рисунок 3.7) Метод треугольника в инженерной графике

7. Расстояние от точки до плоскости проецируется в натуральную величину, если плоскость проецирующая (рисунок 3.8)

Метод треугольника в инженерной графике

8. Любая плоская фигура проецируется в натуральную величину, если она параллельна плоскости проекций (рисунок 3.9а,б)

Метод треугольника в инженерной графике

Таким образом, для решения метрических задач целесообразно данный объект привести в частное положение с тем, чтобы на одной из новых проекций получить более простое решение задачи.

Для такого перехода и служат способы преобразования проекций.

Существует несколько способов преобразовании проекций: способ вращения вокруг осей перпендикулярных плоскостям проекций, способ плоскопараллельного перемещения, способ замены плоскостей проекций и др.

Четыре основных задачи преобразовании проекций

Этими способами решаются четыре основные задачи:

  • Задача 1. Прямую общего положения преобразуем в линию уровня (одно преобразование).
  • Задача 2. Прямую общего положения преобразуем в проецирующую (два преобразования)
  • Задача 3. Плоскость общего положения преобразуем в проецирующую (одно преобразование)
  • Задача 4. Плоскость общего положения преобразуем в плоскость уровня (два преобразования)

Решение 1-ой и 2-ой задачи преобразовании проекций методом вращении, плоскопараллельного перемещении и замены плоскостей проекций

Способ вращения

Способ вращения заключается в том, что геометрические образы вращаются вокруг осей перпендикулярных плоскостям проекций до занятия ими какого-либо частного положения относительно плоскостей проекций. При этом одна проекция точки перемещается по окружности, вторая — но прямой параллельной оси проекций.

На рисунке 3.10 вокруг осиМетод треугольника в инженерной графикевращаем отрезок ЛВ до положения параллельного плоскостиМетод треугольника в инженерной графике(1 задача). Далее вращением вокруг осиМетод треугольника в инженерной графикеполученный отрезок до положения перпендикулярного плоскости Метод треугольника в инженерной графикеНа Метод треугольника в инженерной графикеотрезок с проецируется в точку Метод треугольника в инженерной графике

Метод треугольника в инженерной графике

Способ плоскопараллельного перемещения

Способ плоскопараллельного перемещения является разновидностью способа вращения (вращение без закрепленных осей), т.е. положение объекта можно преобразовывать путем перемещения его параллельно одной плоскости проекций, одновременно изменяя его положение относительно другой плоскости проекций до занятия им какого-либо частного положения.

На рисунке 3.11 сначала АВ переводим из общего положения в положение горизонтальное. При этом Метод треугольника в инженерной графикедолжно быть равно по величина Метод треугольника в инженерной графикенаходим в пересечении вертикальных линий связи и линий Метод треугольника в инженерной графикепараллельных оси Метод треугольника в инженерной графике(1 задача). Далее отрезок Метод треугольника в инженерной графикеперемещаем до положения перпендикулярного оси Метод треугольника в инженерной графикеПри этом Метод треугольника в инженерной графикеНа фронтальной проекции отрезок с проецируется в точку Метод треугольника в инженерной графике(2 задача).

Метод треугольника в инженерной графике

Метод треугольника в инженерной графике

Способ замены плоскостей проекций

Сущность способа замены плоскостей проекций заключается в том, что старая система плоскостей проекций заменяется на новую, с таким расчетом, чтобы относительно новой системы плоскостей, геометрический образ занял какое-то частное положение. При этом нужно помнить, что линии связи будут перпендикулярны относительно новой оси проекций и расстояния от новой оси проекций до новой проекции точки равно расстоянию от старой проекции точки до старой оси.

На рисунке 3.12 произведена первая замена плоскость Метод треугольника в инженерной графикезаменена на новую фронтальную плоскость Метод треугольника в инженерной графикепараллельную прямой АВ. При этом новая ось Метод треугольника в инженерной графикепроводится параллельно проекции Метод треугольника в инженерной графикеЛинии связи проводятся перпендикулярно оси Метод треугольника в инженерной графикеи на них от Метод треугольника в инженерной графикеоткладываются координаты z точек А и В (1 задача).

Метод треугольника в инженерной графике

Далее прямую АВ преобразуем в проецирующую. Для этого проводим новую ось Метод треугольника в инженерной графикеперпендикулярно проекцииМетод треугольника в инженерной графике. Т.к. Метод треугольника в инженерной графикепараллельна оси Метод треугольника в инженерной графике, расстояние до проекций Метод треугольника в инженерной графикебудет одинаковое и прямая спроецируется в точку Метод треугольника в инженерной графике(2 задача)

Решение 3-ой и 4-ой задачи преобразовании проекций методом плоскопараллельного перемещения и замены плоскостей проекций

Так как метод вращения является более громоздким, рассмотрим решение 3-ей и 4-ой задачи преобразования методом плоскопараллельного перемещения и методом замены плоскостей проекций.

Способ плоскопараллельного перемещения

Метод треугольника в инженерной графике

Для того чтобы плоскость из общего положения перевести в проецирующее, нужно иметь ввиду, что при этом ее горизонталь или фронталь должна быть перпендикулярна плоскости проекций. Поэтому на рисунке 3.13 проведена горизонталь Метод треугольника в инженерной графикеДалее Метод треугольника в инженерной графикерасполагаем перпендикулярно оси Метод треугольника в инженерной графикеОткладываем на ней отрезок Метод треугольника в инженерной графикеи циркулем строим треугольник Метод треугольника в инженерной графикеравный по величине Метод треугольника в инженерной графикеНа фронтальной проекции треугольник проецируется в линию (3 задача).

Чтобы плоскость треугольника перевести в положение плоскости уровня, достаточно полученную фронтальную проекцию Метод треугольника в инженерной графикерасположить параллельно оси Метод треугольника в инженерной графикепри этом на горизонтальной проекции треугольник проецируется в натуральную величину (4-я задача)

Способ замены плоскостей проекций

При решении задачи методом замены (рисунок 3.14) новую ось Метод треугольника в инженерной графикепроводим перпендикулярно горизонтали Метод треугольника в инженерной графикетогда на новую фронтальную плоскость Метод треугольника в инженерной графикетреугольник спроецируется в линию, т.е. станет перпендикулярным (3-я задача). Чтобы плоскость перевести в положение плоскости уровня, необходимо новую ось Метод треугольника в инженерной графикепровести параллельно плоскости Метод треугольника в инженерной графикеНа новую плоскость Метод треугольника в инженерной графикетреугольник спроецируется в натуральную величину.

Метод треугольника в инженерной графике

Для того, чтобы методами преобразования решить любую метрическую задачу, необходимо определить какую из четырех основных задач преобразования необходимо решать в каждом конкретном случае.

Видео:Задача №1 Определение натуральной величины отрезка прямой (АВ) методом прямоугольного треугольникаСкачать

Задача №1 Определение натуральной величины отрезка прямой (АВ) методом прямоугольного треугольника

Метрические задачи

Метрические задачи — это задачи на определение линейных или угловых размеров геометрических объектов, а также расстояний и углов между ними.

Главным вопросом метрических задач является вопрос о построении перпендикуляра к прямой или плоскости. Построение взаимно перпендикулярных прямых было рассмотрено ранее.

Из элементарной геометрии известно, что прямая перпендикулярна к плоскости, если она перпендикулярна двум пересекающимся прямым, принадлежащим этой плоскости. В качестве этих пересекающихся прямых наиболее целесообразно использовать горизонталь и фронталь плоскости. Это объясняется тем, что только в этом случае прямой угол будет проецироваться в натуральную величину на соответствующие плоскости проекций. На рисунке 5.1 приведен пространственный чертеж, на котором из плоскости а (из точки А) восстановлен перпендикуляр АВ. Из приведенного изображения можно выяснить методику построения проекций перпендикуляра к плоскости: горизонтальная проекция перпендикуляра к плоскости проводится перпендикулярно горизонтальной проекции горизонтали или горизонтальному следу плоскости, а фронтальная проекция перпендикуляра проводится перпендикулярно фронтальной проекции фронтали или фронтальному следу плоскости. Таким образом, необходимо выполнить следующий алгоритм проведения проекций перпендикуляра к плоскости:

Метод треугольника в инженерной графике

Метод треугольника в инженерной графике

Построение перпендикуляра к плоскость и восстановление перпендикуляра из плоскости называется прямой задачей, а построение плоскости, перпендикулярной к прямой — обратной задачей. Обе задачи решаются по одному и тому же вышеописанному алгоритму. При этом плоскость, перпендикулярную заданной прямой, можно задать следами или пересекающимися горизонталью и фронталью.

На рисунке 5.2 показано решение прямой (а) и обратной (б) задач. В прямой задаче из точки A треугольника AВС восстановлен перпендикуляр, в обратной задаче через точку К проведена плоскость, перпендикулярная прямой АВ. Плоскость задана пересекающимися горизонталью и фронталью.

Здесь же приведены примеры прямой и обратной задач, если плоскость задана следами. В прямой задаче (в) из точки Л построен перпендикуляр на плоскость, в обратной (г) — через точку К проведена плоскость перпендикулярно прямой АВ. Метод треугольника в инженерной графике

Определение расстояний между геометрическими объектами

Среди этих задач можно выделить следующие задачи: расстояние от точки до плоскости, расстояние от точки до прямой, расстояние между двумя параллельными прямыми, расстояние между двумя скрещивающимися прямыми, расстояние между двумя параллельными плоскостями и другие. В общем случае все задачи сводятся к определению расстояний между двумя точками.

Чтобы определить расстояние от точки до плоскости, необходимо выполнить ряд логических действий:

  1. Из точки опустить перпендикуляр на заданную плоскость;
  2. Найти точку встречи перпендикуляра с плоскостью;
  3. Определить НВ расстояния между заданной и найденной точками.

Задача на определение расстояния от точки до прямой решается по следующему плану:

  1. Через точку к провести плоскость, перпендикулярную заданной прямой;
  2. Найти точку встречи М заданной прямой с проведенной плоскостью;
  3. Соединить полученные точки (это будет перпендикуляр из точки на прямую);
  4. Определить НВ перпендикуляра.

Пространственная модель решения второй задачи представлена на рисунке 5.3. Рассмотренная задача относится также к задачам на перпендикулярность двух прямых.

Метод треугольника в инженерной графике

Другие упомянутые задачи на определение расстояний легче решаются методами преобразования эпюра, которые будут рассмотрены в последующих разделах.

Перпендикулярность плоскостей

Плоскость перпендикулярна другой плоскости, если она содержит прямую, перпендикулярную другой плоскости (рисунок 5.4а). Таким образом, для того, чтобы провести плоскость, перпендикулярную другой, необходимо сначала провести перпендикуляр к заданной плоскости, а затем через него провести искомую плоскость. На рисунке 5.46 представлена задача: через точку К провести плоскость, перпендикулярную плоскости треугольника AВС. Искомая плоскость задана двумя пересекающимися прямыми, одна из которых перпендикулярна заданной плоскости.

Метод треугольника в инженерной графике

Если две плоскости являются одноименными плоскостями частного положения (например, горизонтально- или фронтально-проецирующими), то при перпендикулярности плоскостей их собирательные следы будут перпендикулярны друг другу (рисунок 5.4в,г).

Если плоскости являются плоскостями общего положения, то при их перпендикулярности одноименные следы не будут взаимно перпендикулярны. Другими словами, перпендикулярность одноименных следов плоскостей общего положения не является достаточным условием для перпендикулярности самих плоскостей.

Определение углов между прямой и плоскостью и между двумя плоскостями

Определение углов между геометрическими объектами является трудоемкой задачей, если её решать традиционными геометрическими способами. Так, например, задачу на определение угла между прямой и плоскостью (рисунок 5.5) можно решить способом, алгоритм которого содержит следующие операции:

  1. Определить точку встречи прямой АВ с плоскостью а;
  2. Из точки В построить перпендикуляр на плоскость;
  3. Найти точку встречи перпендикуляра с плоскостью;
  4. Точки К и N соединить и определить НВ угла BKN.

Метод треугольника в инженерной графике

Однако задача может быть значительно упрощена, если использовать способ решения задачи с помощью дополнительного угла. Дополнительным углом назовем угол между заданной прямой АВ и перпендикуляром BN, обозначенный через Метод треугольника в инженерной графикеИз приведенного рисунка видно, что, если из точки В прямой построить на плоскость перпендикуляр, определить НВ дополнительного угла Метод треугольника в инженерной графикето искомый угол определится по формуле:

Метод треугольника в инженерной графике

которую можно решить графически, достроив угол Метод треугольника в инженерной графикедо 90°.

То же самое можно сказать о задаче на определение двугранного угла, то есть угла между двумя плоскостями (рисунок 5.66). Первый способ (геометрический) достаточно трудоемок. Он заключается в пересечении угла вспомогательной плоскостью а, перпендикулярной ребру АВ, построении линий пересечения KN и KL и определении натуральной величины угла NKL.

Метод треугольника в инженерной графике

С помощью дополнительного угла задача решается следующим образом. В растворе двугранного угла (рисунок 5.6в) берут любую точку К и строят из неё перпендикуляры на обе плоскости двугранного угла, которые образуют дополнительный угол Метод треугольника в инженерной графикеДалее определяют НВ дополнительного угла и дополняют его (графически) до 180 градусов, исходя из формулы:

Метод треугольника в инженерной графике

Дополненный угол будет искомым.

Натуральную величину дополнительного угла Метод треугольника в инженерной графикев обеих задачах наиболее целесообразно определять методом вращения вокруг горизонтали или фронтали, который будет изложен в последующих темах.

Пример: Из любой вершины треугольника АВС восстановить перпендикуляр длиной 40 мм.

Метод треугольника в инженерной графике

Решение: Сначала необходимо в плоскости треугольника АВС провести горизонталь и фронталь для того, чтобы построить проекции восстановленного перпендикуляра. Далее из точки С проводим проекции перпендикуляра согласно рассмотренному выше алгоритму о перпендикуляре к плоскости. Для того, чтобы отложить 40 мм, необходимо определить НВ ограниченного отрезка перпендикуляра CF (точку F берем произвольно). НВ отрезка CF определяем методом прямоугольного треугольника на горизонтальной проекции CF. Полученную точку К возвращаем на проекции по теореме Фалеса. Получаем проекции перпендикуляра длиной 40 мм (рисунок. 5.7).

Пример: Найти расстояние от точки А до плоскости, заданной следами

Метод треугольника в инженерной графике

Решение: Из точки А строим перпендикуляр на заданную плоскость. Проекции перпендикуляра проводим перпендикулярно следам. Далее находим точку встречи перпендикуляра с заданной плоскостью с помощью вспомогательной фронтально-проецирующей плоскости Метод треугольника в инженерной графикеНаходим линию пересечения плоскостей Метод треугольника в инженерной графике(линия 1-2) и точку встречи Метод треугольника в инженерной графикев месте пересечения горизонтальной проекции перпендикуляра с линией 1-2. Методом прямоугольного треугольника определяем НВ расстояния АК (рисунок 5.8).

Пример: Определить расстояние от точки К до прямой AВ.

Метод треугольника в инженерной графике

Решение: Через точку К проводим плоскость, перпендикулярную заданной прямой. Плоскость задаем пересекающимися горизонталью и фронталью. Их проекции проводим согласно алгоритму о перпендикуляре к плоскости (обратная задача). Далее находим точку встречи прямой с проведенной плоскостью (точка М). Определяем натуральную величину КМ методом прямоугольного треугольника (рисунок 5.9).

Видео:Определение истинной величины треугольника АВС. Метод плоско-параллельного перемещенияСкачать

Определение истинной величины треугольника АВС. Метод плоско-параллельного перемещения

Примеры метрических задач

Задачи, в которых определяются различные геометрические величины -расстояния между объектами, длины отрезков, углы, площади и т.д. называются метрическими. Решение многих метрических задач, например задач на определение кратчайших расстояний, требует построения перпендикулярных прямых и плоскостей.

Перпендикулярность является частным случаем пересечения прямых, прямой и плоскости или двух плоскостей. Необходимо установить соотношения, по которым строятся проекции перпендикулярных прямых и плоскостей.

Теорема о проекциях прямого угла

Прямой угол проецируется на плоскость без искажения, если одна из его сторон параллельна этой плоскости (рис. 10.1).

Метод треугольника в инженерной графике

Рис. 10.1. Теорема о проекциях прямого угла

Дано :Метод треугольника в инженерной графикеBAC = 90°; AB || П’

Доказать, что C’A’Метод треугольника в инженерной графикеA’B’

Доказательство: если AB||П’, то A’B’||AB, но AA’Метод треугольника в инженерной графикеП’^AA’Метод треугольника в инженерной графикеA’B’ значит ABМетод треугольника в инженерной графикеAA,AB Метод треугольника в инженерной графикеплоскости CAA’C’, тогда и A’B’ Метод треугольника в инженерной графикеCAA’C’. Следовательно,CA’Метод треугольника в инженерной графикеA’B’.

На основании этой теоремы две взаимно перпендикулярные прямые (пересекающиеся или скрещивающиеся) проецируются на П1 в виде взаимно перпендикулярных прямых, если одна из них горизонталь, на П2 — если одна из них фронталь (рис. 10.2,а).

Условие перпендикулярности скрещивающихся прямых (рис. 10.2,б) сводятся к условиям перпендикулярности пересекающихся прямых, поведенных через произвольную точку и соответственно параллельных скрещивающимся прямым. Таким образом, понятие перпендикулярности можно отнести как к пересекающимся, так и к скрещивающимся прямым.

Метод треугольника в инженерной графике

Рис. 10.2. Перпендикулярные прямые:
а -пересекающиеся a1 Метод треугольника в инженерной графикеh1 Метод треугольника в инженерной графикеa Метод треугольника в инженерной графикеh ;
б -скрещивающиеся b2 Метод треугольника в инженерной графикеМетод треугольника в инженерной графике2 Метод треугольника в инженерной графикеb Метод треугольника в инженерной графикеМетод треугольника в инженерной графике

Линии наибольшего наклона плоскости

Прямые, лежащие в плоскости и перпендикулярные линиям уровня этой плоскости, называются линиями наибольшего наклона к соответствующей плоскости проекций (рис. 10.3). Так, прямая, лежащая в плоскости и перпендикулярная горизонтали плоскости, называется линией наибольшего наклона к горизонтальной плоскости проекций, а прямая, перпендикулярная фронтали — линией наибольшего наклона к фронтальной плоскости проекций.

Угол между линией наибольшего наклона и ее проекцией на соответствующую плоскость равен углу наклона плоскости к плоскости проекций (см. рис. 9.15).
Метод треугольника в инженерной графике

Рис. 10.3. Линия наибольшего наклона плоскости а к П1:
а — плоскость общего положения; h ∈α — горизонталь плоскости а; AB Метод треугольника в инженерной графикеh — линия наибольшего наклона;
φ = Метод треугольника в инженерной графикеAB, AB 1 — угол наклона плоскости а к П1

Перпендикулярность прямой и плоскости

Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым этой плоскости. На основании теоремы о проекциях прямого угла можно получить условие перпендикулярности прямой общего положения и плоскости общего положения:
Если прямая а перпендикулярна плоскости α(ABC), то ее горизонтальная проекция перпендикулярна горизонтальной проекции горизонтали плоскости, а фронтальная проекция — фронтальной проекции фронтали плоскости.

Например, при построении прямой а, перпендикулярной плоскости α(ABC) (рис. 10.4,а), в плоскости строятся линии уровня — горизонталь и фронталь, затем через произвольную точку в плоскости, в данном случае точку K(h×Метод треугольника в инженерной графике), строится прямая, горизонтальная проекция которой перпендикулярна горизонтальной проекции горизонтали плоскости α(ABC), а фронтальная проекция — фронтальной проекции фронтали плоскости.

Метод треугольника в инженерной графике

Рис. 10.4. Перпендикулярность прямой и плоскости:

а -построение прямой, перпендикулярной плоскости: Метод треугольника в инженерной графике

б -построение плоскости, перпендикулярной прямой: Метод треугольника в инженерной графике

Аналогично решается задача о построении плоскости, перпендикулярной прямой общего положения (рис. 10.4,б)

Если плоскость проецирующая, проекции линий уровня совпадают со следом плоскости, перпендикулярность устанавливается по отношению к следу плоскости. Горизонтальная проекция перпендикуляра к горизонтально-проецирующей плоскости строится перпендикулярно горизонтальному следу плоскости (рис. 10.5,а). Прямая, перпендикулярная горизонтально-проецирующей плоскости, занимает положение горизонтальной линии уровня.
Аналогично, фронтальная проекция перпендикуляра к фронтально-проецирующей плоскости строится перпендикулярно фронтальному следу плоскости (рис. 10.5,б). Прямая, перпендикулярная фронтально-проецирующей плоскости, занимает положение фронтали.

Метод треугольника в инженерной графике

Рис. 10.5. Перпендикулярность прямой и проецирующей плоскости:
а -построение прямой, перпендикулярной плоскости;
б -построение плоскости, перпендикулярной прямой

Взаимная перпендикулярность плоскостей

Две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой. Таким образом, построение взаимно перпендикулярных плоскостей сводится к построению перпендикулярных прямой и плоскости. Например, чтобы через произвольную точку А провести плоскость, перпендикулярную плоскости a(Метод треугольника в инженерной графике× h) (рис. 10.6), достаточно построить прямую n,перпендикулярную плоскости α(Метод треугольника в инженерной графике×h): n1Метод треугольника в инженерной графикеh1; n2Метод треугольника в инженерной графикеМетод треугольника в инженерной графике2. Вторая прямая m, определяющая искомую плоскость, может быть задана произвольно — как пересекающая прямую n или параллельная ей.

Метод треугольника в инженерной графике

Рис. 10.6. Перпендикулярность двух плоскостей

Дано: α(h × Метод треугольника в инженерной графике ) ; A (A1, A2).

Построить: A ∈ β Метод треугольника в инженерной графикеα .

Метод треугольника в инженерной графике

Видео:Определение натуральной величины треугольника АВС методом совмещенияСкачать

Определение натуральной величины треугольника АВС методом совмещения

Определение метрических задач

Традиционно задачи, связанные с измерением длин, углов, площадей и объемов относят к метрическим. В основе решения этих задач лежит определение длины отрезка и, как производной от этого, площади плоской фигуры.

Определение длины отрезка

Одним из наиболее распространенных методов (рисунок 5.1) является метод прямоугольного треугольника (так его называют в начертательной геометрии) или метод ортогональных дополнений (название, принятое в линейной алгебре).
Метод треугольника в инженерной графике

Идея метода базируется на следующем. Истинная величина отрезка AВ является гипотенузой прямоугольного треугольника, один из катетов которого, является проекцией отрезка AВ на плоскость проекции Метод треугольника в инженерной графикеа второй катет -разница координат Метод треугольника в инженерной графикеконцов отрезка для оси, отсутствующей в рассматриваемой плоскости проекции (ортогональное дополнение). Угол между проекцией и гипотенузой этого треугольника (а) определяет наклон прямой к соответствующей плоскости проекции.

На комплексном чертеже возможно решение как на плоскости Метод треугольника в инженерной графикетак и на плоскости Метод треугольника в инженерной графикеПри правильных построениях Метод треугольника в инженерной графике. Углы а и Метод треугольника в инженерной графике-углы наклона отрезка прямой АВ к плоскости Метод треугольника в инженерной графикесоответственно.

Определение площади треугольника

Определение площади треугольника и величины плоского угла можно свести к известной задаче построения треугольника по трем сторонам.

Для этого достаточно, используя рассмотренный выше способ прямоугольного треугольника, найти по порядку истинные величины сторон Метод треугольника в инженерной графике(в соответствии с рисунком 5.2), а затем на свободном месте построить треугольник по трем сторонам.

Метод треугольника в инженерной графике
Величина плоского угла между двумя любыми сторонами этой фигуры может быть измерена на истинной величине треугольника.

Проецирование прямого угла

Решение многих задач Начертательной геометрии связано с необходимостью построения на чертеже взаимно перпендикулярных прямых и плоскостей. Базой для этого служит умение строить прямые углы на комплексном чертеже.

Метод треугольника в инженерной графике
Известная в теории чертежа теорема (приведем ее без доказательства) утверждает, что прямой угол (в соответствии с рисунком 5.3) проецируется на

соответствующую плоскость проекций вез искажения, если одна из его сторон параллельна этой плоскости проекций, а вторая — ей не перпендикулярна.

Перпендикулярность прямых и плоскостей

Выше уже отмечалось, что в трехмерном Евклидовом пространстве отсутствует полная параллельность, то же самое можно сказать и о перпендикулярности. Понятие перпендикулярности так же, как и параллельности, вводится через определение.

Перпендикулярность прямой и плоскости

Считают, что прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся (любым) прямым этой плоскости.

При решении задачи возможны два варианта: проведение перпендикулярной прямой к плоскости из внешней точки и из точки, лежащей в плоскости.
Рассмотрим возможность проведения перпендикуляра из точки К, лежащей в плоскости общего положения Р, заданной следами (рисунок 5.4).

Метод треугольника в инженерной графике
Рисунок 5.4 — Перпендикулярность прямой и плоскости

В плоскости Р (через точку К) проводятся горизонталь h и фронталь f. Прямые, перпендикулярные соответствующим проекциям линий уровня Метод треугольника в инженерной графикев соответствии с теоремой о проецировании прямого угла и данным выше определением, могут быть приняты за проекции прямой Метод треугольника в инженерной графике.

В том случае, когда точка К не лежит в плоскости Р, решение задачи аналогично (рисунок 5.5).

Поскольку положение точки пересечения искомого перпендикуляра не определено, решение соответствует следующей схеме:

а) в плоскости проводятся горизонталь h (через точку В) и фронталь f (через точку A), в случае задания плоскости следами за фронталь и горизонталь принимаются соответствующие следы плоскости Метод треугольника в инженерной графике

Метод треугольника в инженерной графике

Рисунок 5.5 — Перпендикуляр к плоскости

б) из внешней точки К к соответствующим проекциям линий уровня (следам) проводятся перпендикулярные прямыеМетод треугольника в инженерной графике— Линия t принимается за перпендикуляр, опущенный из точки К к плоскости Р;

в) определяется точка S пересечения этого перпендикуляра t и плоскости.

Расстояние от точки до плоскости

Метод треугольника в инженерной графике
Рисунок 5.6 — Расстояние от точки до плоскости

Задачу на определение расстояние от точки до плоскости (рисунок 5.6) можно свести к решению уже известных задач на построение перпендикуляра к плоскости (рисунок 5.5) и определения натуральной величины отрезка прямой (рисунок 5.1)

Перпендикулярность плоскостей

Считают, что две плоскости взаимно перпендикулярны, если одна из них проходит через прямую, перпендикулярную другой плоскости.

Задача может ставиться, как проведение плоскости, перпендикулярной заданной, проходящей через точку или прямую.

При проведении искомой плоскости через точку, как и в предыдущем случае, возможны два варианта проведения плоскости перпендикулярной заданной: через точку, лежащую в плоскости и через точку вне ее (рисунок 5.7).

Точно такой же вариант возникает и при проведении перпендикулярной плоскости через прямую (лежащую в исходной плоскости или не лежащую).

Рассмотрим вариант построения плоскости, проходящей через точку. Пусть точка А лежит в плоскости Р. Линии Метод треугольника в инженерной графикеперпендикулярные соответствующим проекциям линий уровня (следам), определят перпендикуляр t к плоскости Р.

Метод треугольника в инженерной графике
Рисунок 5.7 — Перпендикулярность плоскостей
Проведение через точку А произвольной прямой s позволяет определить плоскость Q, которая будет перпендикулярна плоскости Р.

Если точка А лежит вне плоскости Р, то решение аналогично. Проведение через точку А перпендикуляра t и произвольной прямой s определит плоскость Q, которая также, по определению, будет перпендикулярна плоскости Р.

Решение задачи на проведение плоскости через прямую аналогично решению задачи по проведению плоскости через точку. Достаточно вместо произвольной прямой s использовать заданную прямую АВ. И тогда, в соответствии с рисунком 5.8, задача сведется к проведению перпендикуляра t к плоскости Р (из точки, лежащей в плоскости или лежащей вне ее).
Метод треугольника в инженерной графике

Рисунок 5.8 — Перпендикулярность плоскостей

Определение натуральных величин геометрических элементов

1. Определить натуральную величину отрезка общего положения:

  • способом прямоугольного треугольника;
  • способом замены плоскостей проекций преобразовать в прямую уровня;
  • способом вращения вокруг проецирующей оси преобразовать в прямую уровня.

2. Определить натуральную величину плоскости общего положения (замкнутого отсека):

  • способом замены плоскостей проекций преобразовать в плоскость уровня;
  • способом вращения вокруг линии уровня преобразовать в плоскость уровня;
  • способом плоскопараллельного перемещения преобразовать в плоскость уровня.

Определение расстояния между геометрическими элементами (образами)

1. Определить расстояние от точки до прямой общего положения:

  • способом замены плоскостей проекций преобразовать плоскость, заданную прямой и точкой, в плоскость уровня (задачи 3 и 4 преобразования; прямую и точку рассматривать как плоскость);
  • способом замены плоскостей проекций преобразовать прямую общего положения в проецирующую прямую (задачи 1 и 2 преобразования);
  • способом вращения вокруг линии уровня преобразовать плоскость, заданную прямой и точкой, в плоскость уровня;
  • способом плоскопараллельного перемещения преобразовать плоскость, заданную прямой и точкой, в плоскость уровня;
  • способом задания плоскости, перпендикулярной к прямой (3-й тип задач), построить через заданную точку плоскость, перпендикулярную к прямой, и определить точку пересечения последней с плоскостью.

2. Определить расстояние между параллельными прямыми:

  • способом замены плоскостей проекций преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня (задачи 3 и 4 преобразования);
  • способом замены плоскостей проекций преобразовать две параллельные общего положения в проецирующие прямые (задачи 1 и 2 преобразования);
  • способом вращения вокруг линии уровня преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня, ограничив ее замкнутым отсеком;
  • способом плоскопараллельного перемещения преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня;
  • способом задания плоскости, перпендикулярной к прямой (3-й тип задач), построить плоскость через любую точку, принадлежащую одной из прямых, перпендикулярную ко второй прямой, и определить точку пересечения этой плоскости со второй прямой.

3. Определить расстояние между скрещивающимися прямыми, преобразовав одну из прямых в проецирующую (задачи 1 и 2 преобразования).

4. Определить расстояние от точки до плоскости:

  • по теме «Перпендикулярность» – провести перпендикуляр к плоскости, построить точку пересечения этого перпендикуляра с заданной плоскостью и найти любым способом натуральную величину построенного отрезка (см. пункт 1);
  • способом замены плоскостей проекций преобразовать плоскость общего положения в плоскость проецирующую.

5. Определить расстояние от точки до поверхности вращения:

  • способом замены плоскостей проекций преобразовать плоскость, проведенную через точку и ось вращения поверхности, в плоскость уровня (задача 4 преобразования);
  • способом вращения вокруг проецирующей оси повернуть плоскость, проведенную через точку и ось вращения поверхности, в плоскость уровня.

Определение углов наклона геометрических элементов к плоскостям проекций H и V

1. Определить углы наклона прямой общего положения к плоскостям проекций H и V:

  • способом прямоугольного треугольника построить на двух проекциях натуральные величины отрезка и определить углы наклона прямой;
  • способом замены плоскостей проекций преобразовать прямую общего положения в горизонтальную, а затем во фронтальную прямую (задача 1 преобразования);
  • способом вращения вокруг соответствующей проецирующей оси преобразовать прямую общего положения в горизонтальную и во фронтальную прямые.

2. Определить угол наклона прямой к заданной плоскости общего положения:

  • из любой точки прямой опустить перпендикуляр к плоскости;
  • способом вращения вокруг линии уровня преобразовать построенную плоскость, заданную прямой и перпендикуляром, в плоскость уровня;
  • искомый угол будет дополнять построенный угол до 90°.

3. Определить величину двухгранного угла, если на чертеже есть линии пересечения плоскостей, образующих двухгранный угол (ребро):

  • способом замены плоскостей проекций преобразовать ребро двухгранного угла в проецирующую прямую (задачи 1 и 2 преобразования).

4. Определить угол между двумя плоскостями общего положения, если на чертеже нет линии пересечения заданных плоскостей (ребра):

  • задача решается косвенным путем, для чего из любой точки пространства следует опустить перпендикуляры к заданным плоскостям, которые, в свою очередь, задают вспомогательную плоскость, перпендикулярную к этим плоскостям;
  • эту вспомогательную плоскость способом вращения вокруг линии уровня следует преобразовать в плоскость уровня, определив угол между перпендикулярами (преобразование вспомогательной плоскости в плоскость уровня возможно и другими способами – ее плоскопараллельным перемещением или заменой плоскостей проекций);
  • искомый угол будет дополнять построенный угол до 180° (углом между плоскостями считают угол острый).

Структуризация материала тринадцатой лекции в рассмотренном объеме схематически представлена на рис. 13.1 (лист 1). На последующих листах 2–7 компактно приведены иллюстрации к этой схеме для визуального повторения изученного материала при его повторении (рис. 13.2–13.7).

Метрические задачи:

Метод треугольника в инженерной графике

Определение натуральной величины геометрических элементов:

1. Определение длины отрезка

Способ прямоугольного треугольника

Метод треугольника в инженерной графике

Способ замены плоскостей проекций (задача 1)

Метод треугольника в инженерной графике

Способ вращения вокруг проецирующей оси

Метод треугольника в инженерной графике

2. Определение площади замкнутого отсека

Способ замены плоскостей проекций (задачи 3 и 4)

Метод треугольника в инженерной графике

Способ вращения вокруг прямой уровня (горизонтали)

Метод треугольника в инженерной графике

Способ вращения вокруг проецирующей оси i(i Метод треугольника в инженерной графикеV)

Метод треугольника в инженерной графике

Способ плоско-параллельного перемещения (переноса)

Метод треугольника в инженерной графике

Определение расстояний:

1. Расстояние между точками — определяется величиной отрезка, соединяющего эти точки

2. Расстояние от точки до прямой — определяется величиной перпендикуляра, опущенного из точки к прямой

а. Прямой путь (перпендикулярность)

б. Способ замены плоскостей проекций: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис. 13.2, г)

в. Способ вращения вокруг прямой уровня: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис.13.2, д)

г. Способ плоскопараллельного переноса: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис.13.2, ж)

Метод треугольника в инженерной графике

3. Расстояние между параллельными прямыми — определяется величиной перпендикуляра, проведённого из произвольной точки одной прямой к другой прямой

а. Способ замены плоскостей проекции (рассматриваем две прямые) — задачи 1 и 2 (преобразовать прямые общего положения AB и CD в проецирующие)

б. Способ замены плоскостей проекции (рассматриваем плоскость, которую определяют параллельные прямые) — задачи 3 и 4 (определить натуральную величину плоскости ? (AB//СВ))

Метод треугольника в инженерной графике

Метод треугольника в инженерной графике

4. Расстояние между скрещивающимися прямыми — определяется величиной перпендикуляра, проведённого от одной из прямых, преобразованной в точку, к другой прямой (задачи 1 и 2 замены плоскостей проекции).

Способ замены плоскостей проекций — задачи 1 и 2

Метод треугольника в инженерной графике

5. Расстояние от точки до плоскости — определяется величиной перпендикуляра, проведённого из точки на плоскость до точки его пересечения с этой плоскостью.

а. Прямой путь (перпендикулярность)

Метод треугольника в инженерной графике

б. Способ замены плоскостей проекций (плоскость преобразовать в проецирующую — задача 3)

Метод треугольника в инженерной графике

6. Расстояние между прямой и параллельной ей плоскостью — определяется величиной перпендикуляра, проведённого из произвольной точки на прямой к плоскости.

7. Расстояние между параллельными плоскостями — определяется величиной отрезка перпендикуляра, опущенного из точки одной плоскости на другую плоскость (до точки пересечения с другой плоскостью).

8. Расстояние от точки до поверхности

a. Cпособ вращения вокруг проецирующей оси

Метод треугольника в инженерной графике

Метод треугольника в инженерной графике

Метод треугольника в инженерной графике

б. Способ замены плоскостей проекции

Метод треугольника в инженерной графике

Метод треугольника в инженерной графике

Определение величин углов:

1. Угол φ между скрещивающимися прямыми — определяется плоским углом, образованным двумя пересекающимися прямыми, проведёнными из произвольной точки пространства параллельно скрещивающимся прямым (рис. 13.6, а)

Способ вращения вокруг линии уровня

Дано:
а и b — скрещивающиеся прямые
Требуется:

φ — ?

Решение:
1.
Метод треугольника в инженерной графике
2.φ — вращением вокруг фронтали, проведённой в построенной плоскости α(dс)

Метод треугольника в инженерной графике

2. Угол φ между прямой и плоскостью — определяется углом между прямой и её проекцией на эту плоскость.

Дано:
α(h ∩ f);
AB — прямая общего положения
Требуется:
φ — ?

Метод треугольника в инженерной графике

Решение:
1. l Метод треугольника в инженерной графике α(h ∩ f);
lМетод треугольника в инженерной графике» Метод треугольника в инженерной графикеf»;
lМетод треугольника в инженерной графике Метод треугольника в инженерной графикеh’;
2. ∠φ — вращением вокруг фронтали, проведённой в построенной плоскости β(AB∩l)

3. Угол φ между плоскостями α и β — определяется линейным углом, образованным двумя прямыми, по которым некоторая плоскость γ, перпендикулярная плоскостям (или их ребру), пересекает эти плоскости (углом между плоскостями считают острый угол).

а. Если на чертеже нет ребра (линии пересечения заданных плоскостей) — угол φ определяется способом вращения вокруг линии уровня (рис. а)

Метод треугольника в инженерной графике

Дано:
(m // h); (а
b).
Требуется:
φ — ?
Решение:
1. провести в заданной плоскости фронтали и горизонтали;

2. из произвольной точки пространства D (D’, D») провести перпендикуляры l1 и l2 к заданными плоскостям, которые определяют плоскость γ(l1 l2);
3.
φ — вращением вокруг горизонтали h3, проведённой в построенной плоскости γ(l1 l2).

Метод треугольника в инженерной графике

б. Если на чертеже есть ребро (линия пересечения заданных плоскостей) — угол φ определяется способом замены плоскостей проекций (задачи 1 и 2, рис. б)

Метод треугольника в инженерной графике

ребро АВ двугранного угла преобразовать двумя заменами в проецирующую прямую.

Рекомендую подробно изучить предметы:
  1. Инженерная графика
  2. Начертательная геометрия
  3. Компас
  4. Автокад
  5. Черчение
  6. Проекционное черчение
  7. Аксонометрическое черчение
  8. Строительное черчение
  9. Техническое черчение
  10. Геометрическое черчение
Ещё лекции с примерами решения и объяснением:
  • Тени в ортогональных проекциях
  • Кривые поверхности
  • Пересечения криволинейных поверхностей
  • Пересечения поверхностей с прямой и плоскостью
  • Пересечение поверхности плоскостью и прямой
  • Развертки поверхностей
  • Способы преобразования проекций
  • Взаимное положение прямой и плоскости

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

🌟 Видео

Анастасия А и Мария Батулина. Как ставить цели и достигать желаемого? Алгоритм НейроцельСкачать

Анастасия А и Мария Батулина. Как ставить цели и достигать желаемого? Алгоритм Нейроцель

Котика ударило током, 10 т. ВольтСкачать

Котика ударило током, 10 т. Вольт

Определение истинной величины двугранного угла АВСD при ребре АВ методом замены плоскостей проекцииСкачать

Определение истинной величины двугранного угла АВСD при ребре АВ методом замены плоскостей проекции

Способ замены (перемены) плоскостей проекции. Определение истинной величины отрезка и плоской фигурыСкачать

Способ замены (перемены) плоскостей проекции. Определение истинной величины отрезка и плоской фигуры

Натуральная величина отрезкаСкачать

Натуральная величина отрезка

Угол наклона плоскости общего положения относительно плоскостям проекцииСкачать

Угол наклона плоскости общего положения относительно плоскостям проекции

Частное положение точек. Точки принадлежащие к плоскостям проекции.Скачать

Частное положение точек. Точки принадлежащие к плоскостям проекции.

Проецирование точки на 3 плоскости проекцийСкачать

Проецирование точки на 3 плоскости проекций

Определение длины отрезкаСкачать

Определение длины отрезка

Сдача зачета по начертательной геометрии МГСУ-МИСИСкачать

Сдача зачета по начертательной геометрии МГСУ-МИСИ
Поделиться или сохранить к себе: