Меньший угол прямоугольного треугольника

Как найти углы прямоугольного треугольника

Видео:ЕГЭ Математика Задание 6#27771Скачать

ЕГЭ Математика Задание 6#27771

Онлайн калькулятор

Меньший угол прямоугольного треугольника

Чтобы найти острые углы прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):

  • для угла α:
    • угол β
    • длины катетов a и b
    • длину гипотенузы (с) и длину одного из катетов
  • для угла β:
    • угол α
    • длины катетов a и b
    • длину гипотенузы (с) и длину одного из катетов

Введите их в соответствующие поля и получите результат.

Найти угол α зная угол β и наоборот

Формула

Найти углы прямоугольного треугольника зная катеты

Катет a =
Катет b =

Чему равны острые углы (α и β) прямоугольного треугольника если известны оба катета (a и b)?

Формулы

Пример

Для примера определим чему равны углы α и β в градусах если катет a = 5 см, а катет b = 2 см:

Найти углы прямоугольного треугольника по катету и гипотенузе

Гипотенуза c =
Катет =

Чему равны острые углы (α и β) прямоугольного треугольника если известны гипотенуза c и один из катетов (a или b)?

Видео:ЕГЭ Математика. Угол между медианой и биссектрисой в прямоугольном треугольникеСкачать

ЕГЭ Математика. Угол между медианой и биссектрисой в прямоугольном треугольнике

Решение №2069 Угол между биссектрисой и медианой прямоугольного треугольника, проведёнными из вершины прямого угла, равен 14°. Найдите меньший угол прямоугольного треугольника. Ответ дайте в градусах.

Угол между биссектрисой и медианой прямоугольного треугольника, проведёнными из вершины прямого угла, равен 14°. Найдите меньший угол прямоугольного треугольника. Ответ дайте в градусах.

Меньший угол прямоугольного треугольника

Источники: fipi, os.fipi, Основная волна 2014.

Меньший угол прямоугольного треугольника

СМ – медиана, СК – биссектриса, ∠С = 90° прямой, тогда:

АМ = МD
∠ACK = ∠BCK = 90°/2 = 45°

∠АСМ = ∠ACK – ∠МСК = 45° – 14° = 31°

Медиана в прямоугольном треугольнике, проведенная к гипотенузе, равна половине гипотенузы:

СМ = АМ

Тогда ΔАМС равнобедренный, углы при основании равны:

∠АСМ = ∠MAC = 31°

Это и есть меньший угол прямоугольного треугольника АВС (∠В = 90 – 31 = 59°).

Видео:7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»Скачать

7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»

Прямоугольные треугольники

Прямоугольный треугольник — это треугольник, у которого один угол прямой (равен $90$ градусов).

Катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.

Некоторые свойства прямоугольного треугольника:

1. Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.

2. Если в прямоугольном треугольнике один из острых углов равен $45$ градусов, то этот треугольник равнобедренный.

3. Катет прямоугольного треугольника, лежащий напротив угла в $30$ градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)

4. Катет прямоугольного треугольника, лежащий напротив угла в $60$ градусов, равен малому катету этого треугольника, умноженному на $√3$.

5. В равнобедренном прямоугольном треугольнике гипотенуза равна катету, умноженному на $√2$

6. Медиана прямоугольного треугольника, проведенная к его гипотенузе, равна ее половине и радиусу описанной окружности $(R)$

7. Медиана прямоугольного треугольника, проведенная к его гипотенузе, делит треугольник на два равнобедренных треугольника, основаниями, которых являются катеты данного треугольника.

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$

Для острого угла $В$: $АС$ — противолежащий катет; $ВС$ — прилежащий катет.

Для острого угла $А$: $ВС$ — противолежащий катет; $АС$ — прилежащий катет.

1. Синусом $(sin)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

2. Косинусом $(cos)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

3. Тангенсом $(tg)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

4. Котангенсом $(ctg)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.

В прямоугольном треугольнике $АВС$ для острого угла $В$:

5. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.

6. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.

7. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения.

Значения тригонометрических функций некоторых углов:

$α$$30$$45$$60$
$sinα$$/$$/$$/$
$cosα$$/$$/$$/$
$tgα$$/$$1$$√3$
$ctgα$$√3$$1$$/$

Площадь прямоугольного треугольника равна половине произведения его катетов

В треугольнике $АВС$ угол $С$ равен $90$ градусов, $АВ=10, АС=√$. Найдите косинус внешнего угла при вершине $В$.

Так как внешний угол $АВD$ при вершине $В$ и угол $АВС$ смежные, то

Косинусом $(cos)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе. Следовательно, для угла $АВС$:

Катет $ВС$ мы можем найти по теореме Пифагора:

Подставим найденное значение в формулу косинуса

В треугольнике $АВС$ угол $С$ равен $90$ градусов, $sin⁡A=/, AC=9$. Найдите $АВ$.

Распишем синус угла $А$ по определению:

Так как мы знаем длину катета $АС$ и он не участвует в записи синуса угла $А$, то можем $ВС$ и $АВ$ взять за части $4х$ и $5х$ соответственно.

Применим теорему Пифагора, чтобы отыскать $«х»$

Так как длина $АВ$ составляет пять частей, то $3∙5=15$

В прямоугольном треугольнике с прямым углом $С$ и высотой $СD$:

Квадрат высоты, проведенной к гипотенузе, равен произведению отрезков, на которые высота поделила гипотенузу.

В прямоугольном треугольнике : квадрат катета равен произведению гипотенузы на проекцию этого катета на гипотенузу.

Произведение катетов прямоугольного треугольника равно произведению его гипотенузы на высоту, проведенную к гипотенузе.

🌟 Видео

6 задания ЕГЭ по математике. Угол между медианой и биссектрисой в прямоугольном треугольнике.Скачать

6 задания ЕГЭ по математике. Угол между медианой и биссектрисой в прямоугольном треугольнике.

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnline

8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольникаСкачать

8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольника

№256. Один из углов прямоугольного треугольника равен 60°, а сумма гипотенузы и меньшего из катетовСкачать

№256. Один из углов прямоугольного треугольника равен 60°, а сумма гипотенузы и меньшего из катетов

Профильный ЕГЭ 2024. Задача 1. Прямоугольный треугольник. 10 классСкачать

Профильный ЕГЭ 2024. Задача 1. Прямоугольный треугольник. 10 класс

ЗАДАНИЕ 6 из ЕГЭ_8Скачать

ЗАДАНИЕ 6 из ЕГЭ_8

ЕГЭ Математика Задание 6#27773Скачать

ЕГЭ Математика Задание 6#27773

#635 НАУКА Структура вакуума. Устройство Мироздания: версия Межзвездного Союза. Юмор в разных мирах.Скачать

#635 НАУКА Структура вакуума. Устройство Мироздания: версия Межзвездного Союза. Юмор в разных мирах.

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

ЕГЭ Математика Задание 6#27775Скачать

ЕГЭ Математика Задание 6#27775

ЕГЭ ПРОФИЛЬ ФИПИ ЗАДАНИЕ 1 НАЙДИТЕ МНЬШИЙ УГОЛ ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКАСкачать

ЕГЭ ПРОФИЛЬ ФИПИ ЗАДАНИЕ 1 НАЙДИТЕ МНЬШИЙ УГОЛ ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА

1756 Один острый угол прямоугольного треугольника на 79 градусов больше другогоСкачать

1756 Один острый угол прямоугольного треугольника на 79 градусов больше другого

Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Найдите углы прямоугольного треугольника, если его гипотенуза равна 12, а площадь равна 18Скачать

Найдите углы прямоугольного треугольника, если его гипотенуза равна 12, а площадь равна 18

Найдите острый угол между биссектрисами острых углов прямоугольного треугольника.Скачать

Найдите острый угол между биссектрисами острых углов прямоугольного треугольника.

Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ
Поделиться или сохранить к себе: