Вначале решим более общую задачу нахождения магнитной индукции на оси витка с током. Для этого сделаем рисунок 3.8, на котором изобразим элемент тока 


Рис. 3.8 Определение магнитной индукции
на оси кругового витка с током
Вектор магнитной индукции 

Как следует из правил векторного произведения, магнитная индукция 




Для нахождения полной магнитной индукции 


Данный интеграл можно упростить, если представить 

При этом в силу симметрии 




Учитывая, что 


Нетрудно заметить, что вычисление получившегося интеграла даст длину контура, т. е. 


Используя магнитный момент контура, формулу (3.19) можно переписать следующим образом

Теперь отметим, что полученное в общем виде решение (3.19) позволяет проанализировать предельный случай, когда точка 


Результирующий вектор магнитной индукции (3.19) направлен вдоль оси тока, а его направление связано с направлением тока правилом правого винта (рис. 3.9).
Рис. 3.9 Определение магнитной индукции
в центре кругового витка с током
Индукция магнитного поля в центре дуги окружности
Данная задача может быть решена как частный случай рассмотренной в предыдущем пункте задачи. В этом случае интеграл в формуле (3.18) следует брать не по всей длине окружности, а только по ее дуге l. А также учесть то, что индукция ищется в центре дуги, поэтому 

где 

5 Вектор индукции магнитного поля движущегося в вакууме точечного заряда (без вывода формулы)

где 


Силы Ампера и Лоренца
Опыты по отклонению рамки с током в магнитном поле показывают, что на всякий проводник с током, помещенный в магнитное поле, действует механическая сила, называемая силой Ампера.
Закон Ампера определяет силу, действующую на проводник с током, помещенный в магнитное поле:


где 




Если прямолинейный проводник длиной 

Сила Ампера всегда направлена перпендикулярно плоскости, содержащей векторы 




Рис. 3.10 Правило левой руки и правило буравчика для силы Ампера
С другой стороны, для определения направления силы Ампера можно также применить мнемоническоеправило левой руки (рис. 3.10): нужно поместить ладонь так, чтобы силовые линии магнитной индукции 
Исходя из формулы (3.22), найдем выражение для силы взаимодействия двух бесконечно длинных, прямых, параллельных друг другу проводников, по которым текут токи I1 и I2 (рис. 3.11) (опыт Ампера). Расстояние между проводами равно a.
Определим силу Ампера dF21, действующую со стороны магнитного поля первого тока I1 на элемент l2dl второго тока.
Величина магнитной индукции этого поля B1 в точке расположения элемента второго проводника с током равна

Рис. 3.11 Опыт Ампера по определению силы взаимодействия
двух прямолинейных токов
Тогда с учетом (3.22) получим

Рассуждая точно так же, можно показать, что сила Ампера, действующая со стороны магнитного поля, создаваемого вторым проводником с током, на элемент первого проводника I1dl , равна

т. e. dF12 = dF21. Таким образом, мы вывели формулу (3.1), которая была получена Ампером экспериментальным путем.
На рис. 3.11 показано направление сил Ампера. В случае, когда токи направлены в одну и ту же сторону, то это ‑ силы притяжения, а в случае токов разного направления ‑ силы отталкивания.
Из формулы (3.24), можно получить силу Ампера, действующую на единицу длины проводника

Таким образом, сила взаимодействия двух параллельных прямых проводников с токами прямо пропорциональна произведению величин токов и обратно пропорциональна расстоянию между ними.
Закон Ампера утверждает, что на элемент с током, помещенный в магнитное поле, действует сила. Но всякий ток есть перемещение заряженных частиц. Естественно предположить, что силы, действующие на проводник с током в магнитном поле, обусловлены силами, действующими на отдельные движущиеся заряды. Этот вывод подтверждается рядом опытов (например, электронный пучок в магнитном поле отклоняется).
Найдем выражение для силы, действующей на заряд, движущийся в магнитном поле, исходя из закона Ампера. Для этого в формулу, определяющую элементарную силу Ампера

подставим выражение для силы электрического тока


где I – сила тока, протекающего через проводник; Q – величина полного заряда протекшего за время t; q – величина заряда одной частицы; N – общее число заряженных частиц, прошедших через проводник объемом V, длиной l и сечением S; n – число частиц в единице объема (концентрация); v – скорость частицы.
В результате получим:

Направление вектора 

Эта сила действует на все движущиеся заряды в проводнике длиной 

Следовательно, сила, действующая на один заряд, будет равна:

Формула (3.28) определяет силу Лоренца, величина которой

где a — угол между векторами скорости частицы и магнитной индукции.
В экспериментальной физике часто встречается ситуация, когда заряженная частица движется одновременно и в магнитном и электрическом поле. В этом случае рассматривают полную силу Лоренца в виде

где 



Только в магнитном поле на движущуюся заряженную частицу действует магнитная составляющая силы Лоренца (рис. 3.12)

Рис. 3.12 Сила Лоренца
Магнитная составляющая силы Лоренца перпендикулярна вектору скорости и вектору магнитной индукции. Она не изменяет величины скорости, а изменяет только ее направление, следовательно, работы не совершает.
Взаимная ориентация трех векторов ‑ 


Рис. 3.13 Сила Лоренца, действующая на положительный заряд
Как видно из рис. 3.13, если частица влетает в магнитное поле под углом 



где 
Отношение магнитного момента 

где 
Рассмотрим общий случай движения заряженной частицы в однородном магнитном поле, когда ее скорость направлена под произвольным углом a к вектору магнитной индукции (рис. 3.14). Если заряженная частица влетает в однородное магнитное поле под углом 
Разложим вектор скорости на составляющие v|| (параллельную вектору 



Наличие v^ приводит к тому, что на частицу будет действовать сила Лоренца и она будет двигаться по окружности радиусом R в плоскости перпендикулярной вектору 

Период такого движения (время одного витка частицы по окружности) равен

Рис. 3.14 Движение по винтовой линии заряженной частицы
в магнитном поле
За счет наличия v|| частица будет двигаться равномерно вдоль 
Таким образом, частица участвует одновременно в двух движениях. Результирующая траектория движения представляет собой винтовую линию, ось которой совпадает с направлением индукции магнитного поля. Расстояние h между соседними витками называется шагом винтовой линии и равно:

Действие магнитного поля на движущийся заряд находит большое практическое применение, в частности, в работе электронно-лучевой трубки, где используется явление отклонения заряженных частиц электрическим и магнитным полями, а также в работе масс-спектрографов, позволяющих определить удельный заряд частиц (q/m) и ускорителей заряженных частиц (циклотронов).
Рассмотрим один такой пример, назыаемый «магнитной бутылкой» (рис. 3.15). Пусть неоднородное магнитное поле создано двумя витками с токами, протекающими в одном направлении. Сгущение линий индукции в какой-либо пространнственной области означает большее значение величины магнитной индукции в этой области. Индукция магнитного поля вблизи витков с током больше, чем в пространстве между ними. По этой причине радиус винтовой линии траектории частицы, обратно пропорциональный модулю индукции, меньше вблизи витков, чем в пространстве между ними. После того, как частица, двигаясь вправо по винтовой линии, пройдет среднюю точку, сила Лоренца, действующая на чатицу, приобретает компоненту 

Рис. 3.15 Магнитная «бутылка»
Закономерностями движения заряженных частиц в магнитном поле можно объяснить особенности движения космических лучей вблизи Земли. Космические лучи – это потоки заряженных частиц большой энергии. При приближении к поверхности Земли эти частицы начинают испытывать действие магнитного поля Земли. Те из них, которые направляются к магнитным полюсам, будут двигаться почти вдоль линий земного магнитного поля и навиваться на них. Заряженные частицы, подлетающие к Земле вблизи экватора, направлены почти перпендикулярно к линиям магнитного поля, их траектория будет искривляться. и лишь самые быстрые из них достигнут поверхности Земли (рис. 3.16).
Рис. 3.16 Образование Полярного сияния
Поэтому интенсивность космических лучей доходящих до Земли вблизи экватора, заметно меньше, чем вблизи полюсов. С этим связан тот факт что, Полярное сияние наблюдается главным образом в приполярных областях Земли.
Эффект Холла
В 1880г. американский физик Холл провел следующий опыт: он пропускал постоянный электрический ток I через пластинку из золота и измерял разность потенциалов 

Рис. 3.17 Эффект Холла
В отсутствии магнитного поля 

Экспериментально было обнаружено, что

где I ‑ сила тока; B ‑ индукция магнитного поля; b ‑ ширина пластины; 
Дальнейшее исследование показало, что эффект Холла наблюдается во всех проводниках и полупроводниках. Величина константы Холла зависит от материала пластины, причем этот коэффициент для одних веществ положителен, а для других ‑ отрицателен.
Явление Холла можно объяснить, исходя из силы Лоренца. На заряд, движущийся в магнитном поле с индукцией B, действует сила Лоренца

Рис. 3.18 Знак эффекта Холла
Если носителями тока в веществе являются положительные заряды то под действием силы Лоренца эти заряды q отклоняются к верхней грани (при выбранных направлениях 

Найдем теперь выражение для 




Если пластина достаточно длинная и широкая, то поперечное электрическое поле можно считать однородным. Для однородного поля можно написать связь между E и 

Силу тока I можно выразить следующим образом:

где v ‑ скорость упорядоченного движения зарядов; n ‑ число зарядов в единице объема; 

подставляя (3.35) в (3.33) получим

Сравнивая эту формулу с экспериментальной (3.31), имеем

Отсюда видно, что, знак константы Холла совпадает со знаком заряда q носителей тока. В полупроводниках носителями тока могут быть электроны ( 



С помощью константы Холла можно также определить концентрацию носителей тока, если характер проводимости и заряд носителей тока известны (например, для металлов):

На принципе, похожем на эффект Холла, основана работа МГД- генераторов (магнитогидродинамических генераторов). В эффекте Холла используется ток проводимости, а можно использовать конвекционный ток. Например, по трубе продувается поток раскаленных газов (следовательно, ионизированных) в магнитном поле. В трубу вводятся электроды, на них возникает разность потенциалов. Величина 
К.П.Д. МГД-генераторов может достигать 50…60%, в то время, как у тепловых электростанций 
Видео:Электромагнитная индукция. Простыми словамиСкачать

Магнитное поле кругового тока
Рассмотрим магнитное поле постоянного тока /, текущего по проводу в форме окружности С радиуса а. Применим закон Био — Савара — Лапласа для определения магнитной индукции в центре кругового тока.
К расчету магнитного по^хя кругового тока
На рис. 6.2 изображены вектор dl, характеризующий произвольный малый
участок проводника с током, и вектор R , соединяющий этот участок с точкой О, в которой требуется определить магнитную инндукцию В . По определению векторного произведения из формулы (6.1)
следует, что вектор dB магнитной индукции поля, создаваемого рассматриваемым участком тока, перпендикулярен и
вектору dl , и вектору R . Таким образом, начало вектора dB находится в точке О, а сам вектор перпендикулярен плоскости контура С.
Так как векторы dl и R образуют прямой угол, модуль вектора dB согласно формуле (6.3) будет
Векторы dB магнитной индукции полей, создаваемых различными участками контура в точке О, совпадают по направлению. В таком случае их векторная сумма будет представлять собой вектор В , который имеет то же направление. При этом модуль этого вектора будет равен
сумме модулей векторов dB :
Интеграл от dl равен длине окружности:
Таким образом, придем к следующей формуле для магнитной индукции поля, создаваемого круговым током в центре окружности:
Модуль рт вектора магнитного момента кругового тока равен произведению силы тока на площадь круга:
Используя это соотношение, выражение (6.5) можно записать так:

В центре кругового витка с током вектор магнитной индукции направлен так же, как вектор магнитного момента рт. При этом справедливо соотношение
Отметим, что направление вектора магнитной индукции в центре кругового тока связано с направлением электрического тока правилом правого винта.
Линии в пространстве, к которым вектор В в любой точке является касательным, называются силовыми линиями магнитного поля. На рис. б.З изображены силовые линии магнитного поля кругового тока.
Рис. 6.8. Силовые линии магнитного поля кругового тока
Видео:Магнитная индукция в действии вращение медной проволоки #обзорбытовойтехникиСкачать

Магнитная индукция в центре окружности
Магнитное поле постоянных токов различной конфигурации изучалось экспериментально французскими учеными Ж. Био и Ф. Саваром (1820 г.). Они пришли к выводу, что индукция магнитного поля токов, текущих по проводнику, определяется совместным действием всех отдельных участков проводника. Магнитное поле подчиняется принципу суперпозиции :
Если магнитное поле создается несколькими проводниками с током, то индукция результирующего поля есть векторная сумма индукций полей, создаваемых каждым проводником в отдельности.
Индукцию 



|
Здесь – расстояние от данного участка Δ до точки наблюдения, α – угол между направлением на точку наблюдения и направлением тока на данном участке, μ0 – магнитная постоянная. Направление вектора 
|
которая уже приводилась в § 1.16.
![]() | |||||||||||||||||||||||
| Рисунок 1.17.1. Закон Био–Савара позволяет рассчитывать магнитные поля токов различных конфигураций. Нетрудно, например, выполнить расчет магнитного поля в центре кругового витка с током. Этот расчет приводит к формуле
где – радиус кругового проводника. Для определения направления вектора Расчеты магнитного поля часто упрощаются при учете симметрии в конфигурации токов, создающих поле. В этом случае можно пользаоваться теоремой о циркуляции вектора магнитной индукции , которая в теории магнитного поля токов играет ту же роль, что и теорема Гаусса в электростатике. Поясним понятие циркуляции вектора
|

























также можно использовать правило буравчика, только теперь его рукоятку нужно вращать в направлении кругового тока, а поступательное перемещение буравчика укажет направление вектора магнитной индукции.
Пусть в пространстве, где создано магнитное поле, выбран некоторый условный замкнутый контур (не обязательно плоский) и указано положительное направление его обхода. На каждом отдельном малом участке Δ этого контура можно определить касательную составляющую
вектора
в данном месте, то есть определить проекцию вектора
на направление касательной к данному участку контура (рис. 1.17.2).
называют сумму произведений
Δ, взятую по всему контуру :
магнитного поля постоянных токов по любому контуру всегда равна произведению магнитной постоянной μ0 на сумму всех токов, пронизывающих контур:

направлен по касательной
, а его модуль одинаков во всех точках окружности. Применение теоремы о циркуляции приводит к соотношению:
может быть использована для расчета магнитных полей, создаваемых симметричным распределением токов, когда из соображений симметрии можно «угадать» общую структуру поля.
одинаков вдоль всей этой линии. По теореме о циркуляции можно записать:


по контуру равна , где – длина стороны . Число витков соленоида, пронизывающих контур , равно , где – число витков на единицу длины соленоида, а полный ток, пронизывающий контур, равен . Согласно теореме о циркуляции,














