Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать
Подобные треугольники
Рассмотрим два треугольника KLM и TRP (рис.1) и введём следующие обозначения.
длины сторон треугольника KLM , расположенные в порядке возрастания.
длины сторон треугольника TRP , расположенные в порядке возрастания.
Переобозначим вершины треугольников KLM и TRP так, как показано на рисунке 2.
На рисунке 2 треугольник KLM обозначается как треугольник A1B1C1 , а треугольник TRP обозначается как треугольник A2B2C2 .
вершины A1 и A2 , B1 и B2 , C1 и C2 называют сходственными вершинами ,
стороны A1B1 и A2B2 , A1C1 и A2C2 , B1C1 и B2C2 называют сходственными сторонами ,
углы A1 и A2 , B1 и B2 , C1 и C2 называют сходственными углами
Определение 2 . Треугольники A1B1C1 и A2B2C2 называют подобными треугольниками, если их сходственные углы равны, а сходственные стороны пропорциональны.
а, во-вторых, существует положительное число k , такое, что справедливы равенства:
Признак подобия треугольников по двум сторонам и углу между ними
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключённые между этими сторонами равны, то такие треугольники подобны.
Признак подобия треугольников по двум углам
Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
Признак подобия треугольников по трём сторонам
Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны
Признак подобия треугольников по двум сторонам и углу между ними
Формулировка признака подобия:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключённые между этими сторонами равны, то такие треугольники подобны.
Признак подобия треугольников по двум углам
Формулировка признака подобия:
Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
Признак подобия треугольников по трём сторонам
Формулировка признака подобия:
Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны
Видео:Подобие прямоугольных треугольников и его применениеСкачать
Признаки подобия прямоугольных треугольников
Название признака
Рисунок
Формулировка признака
Признак подобия прямоугольных треугольников по двум катетам
Если два катета одного прямоугольного треугольника пропорциональны двум катетам другого прямоугольного треугольника, то такие прямоугольные треугольники подобны.
Признак подобия прямоугольных треугольников по острому углу
Если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то такие прямоугольные треугольники подобны.
Признак подобия прямоугольных треугольников по гипотенузе и катету
Если гипотенуза и катет одного прямоугольного треугольника пропорциональны гипотенузе и катету другого прямоугольного треугольника, то такие прямоугольные треугольники подобны.
Признак подобия прямоугольных треугольников по двум катетам
Если два катета одного прямоугольного треугольника пропорциональны двум катетам другого прямоугольного треугольника, то такие прямоугольные треугольники подобны.
Признак подобия прямоугольных треугольников по острому углу
Если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то такие прямоугольные треугольники подобны.
Признак подобия прямоугольных треугольников по гипотенузе и катету
Если гипотенуза и катет одного прямоугольного треугольника пропорциональны гипотенузе и катету другого прямоугольного треугольника, то такие прямоугольные треугольники подобны.
Следствие 1 . Прямая, пересекающая треугольник и параллельная стороне треугольника, отсекает от этого треугольника подобный треугольник (рис. 3).
Следствие 2 . Отношение площадей подобных треугольников равно квадрату коэффициента подобия (рис. 4)
Видео:Подобие треугольников (ч.2) | Математика | TutorOnlineСкачать
Любые прямоугольные треугольники подобны
Какие из следующих утверждений верны?
1) Любые два прямоугольных треугольника подобны.
2) Если катет и гипотенуза прямоугольного треугольника равны соответственно 6 и 10, то второй катет этого треугольника равен 8.
3) Стороны треугольника пропорциональны косинусам противолежащих углов.
4) Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними.
Если утверждений несколько, запишите их номера в порядке возрастания.
Проверим каждое из утверждений.
1) «Любые два прямоугольных треугольника подобны.» — неверно, так как нет второго равного угла.
2) «Если катет и гипотенуза прямоугольного треугольника равны соответственно 6 и 10, то второй катет этого треугольника равен 8.» — верно, по теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов.
3) «Стороны треугольника пропорциональны косинусам противолежащих углов.» — неверно, по теореме синусов стороны треугольника пропорциональны синусам противолежащих сторон.
4) «Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними.» — верно, по теореме косинусов.
Видео:Подобие в прямоугольных треугольникахСкачать
Подобие прямоугольных треугольников
Подобие прямоугольных треугольников обычно доказывают, используя не общие признаки, а специальные признаки подобия для прямоугольных треугольников.
Признаки подобия прямоугольных треугольников
1- й признак подобия прямоугольных треугольников
( подобие прямоугольных треугольников по острому углу)
Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
— прямоугольные (∠C=90º, ∠C=90º).
(по острому углу).
2- й признак подобия прямоугольных треугольников
( подобие прямоугольных треугольников по двум катетам)
Если два катета одного прямоугольного треугольника пропорциональны двум катетам другого прямоугольного треугольника, то такие треугольники подобны.
— прямоугольные (∠C=90º, ∠C=90º).
(по двум катетам).
3- й признак подобия прямоугольных треугольников
( подобие прямоугольных треугольников по катету и гипотенузе)
Если катет и гипотенуза одного прямоугольного треугольника пропорциональны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники подобны.
— прямоугольные (∠C=90º, ∠C=90º).
(по катету и гипотенузе).
Из подобия прямоугольных треугольников следуют соотношения между высотой, проведённой к гипотенузе, гипотенузой, катетами и проекциями катетов на гипотенузу, а также свойство биссектрисы треугольника.
📸 Видео
Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие ТреугольниковСкачать
Решение прямоугольных треугольников. Практическая часть. 8 класс.Скачать
Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать
8 класс, 23 урок, Второй признак подобия треугольниковСкачать
Всё про прямоугольный треугольник за 15 минут | Осторожно, спойлер! | Борис Трушин !Скачать