Явление преломления света, наверное, каждый не раз встречал в повседневной жизни. Например, если опустить в прозрачный стакан с водой трубочку, то можно заметить, что та часть трубочки, которая находится в воде, кажется сдвинутой в сторону. Это объясняется тем, что на границе двух сред происходит изменение направления лучей, иными словами преломления света.
Точно так же, если опустить в воду под наклоном линейку, будет казаться, что она преломилась и ее подводная часть поднялась выше.
Ведь оказывается, что лучи света, оказавшись на границе воздуха и воды, испытывают преломление. Луч света попадает на поверхность воды под одним углом, а дальше он уходит вглубь воды под другим углом, под меньшим наклоном к вертикали.
Если пустить из воды в воздух обратный луч, он пройдет по тому же самому пути. Угол между перпендикуляром к поверхности раздела сред в точке падения и падающим лучом называется углом падения.
Угол преломления – это угол между тем же самым перпендикуляром и преломленным лучом. Преломления света на границе двух сред объясняется различной скоростью распространения света в этих средах. При преломлении света всегда выполнятся две закономерности:
• Во-первых, лучи, независимо от того он падающий или преломленный, а также и перпендикуляр, который является границей раздела двух сред в точке излома луча — всегда лежат в одной плоскости;
• Во-вторых, отношение sіnus угла падения к sіnus угла преломления, являются постоянной величиной для двух этих сред.
Эти два утверждения выражают закон преломления света.
Sіnus угла падения α относится к sіnus угла преломления β, так же как скорость волны в первой среде — v1 к скорости волны во второй среде — v2, и равен величине n. N – это постоянная величина, которая не зависит от угла падения. Величина n называется показателем преломления второй среды относительно первой среды. И если в качестве первой среды был вакуум, то показатель преломления второй среды называют абсолютным показателем преломления. Соответственно он равен отношению sіnus угла падения к sіnus угла преломления при переходе светового луча из вакуума в данную среду.
Показатель преломления зависит от характеристик света, от температуры вещества и от его плотности, то есть от физических характеристик среды.
Чаще приходится рассматривать переход света через границу воздух-твердое тело или воздух-жидкость, чем через границу вакуум-определенная среда.
Следует отметить так же, что относительные показатель преломления двух веществ равен отношению из абсолютных показателей преломления.
Давайте познакомится с этим законом с помощью простых физических опытов, которые доступы вам всем в бытовых условиях.
Положим монету в чашку так, чтобы она скрылась за краем чашки, а теперь будем наливать в чашку воду. И вот что удивительно: монета показалась из-за края чашки, будто бы она всплыла, или дно чашки поднялось вверх.
Нарисуем монету в чашке с водой, и идущие от нее лучи солнца. На границе раздела воздуха и воды эти лучи преломляются и выходят из воды под большим углом. А мы видим монету в том месте, где сходятся линии преломленных лучей. Поэтому видимое изображение монеты находится выше, чем сама монета.
Поставим на пути параллельных лучей света наполненную водой емкость с параллельными стенками. На входе из воздуха в воду все четыре луча повернулись на некоторый угол, а на выходе из воды в воздух они повернулись на тот же самый угол, но в обратную сторону.
Увеличим наклон лучей, и на выходе они все равно останутся параллельными, но сильнее сдвинутся в сторону. Из-за этого сдвига книжные строчки, если посмотреть на них сквозь прозрачную пластину, кажутся перерезанными. Они сместись вверх, как поднималась вверх монета в первом опыте.
Все прозрачные предметы мы, как правило, видим исключительно благодаря тому, что свет преломляется и отражается на их поверхности. Если бы такого эффекта не существовало, то все эти предметы были бы полностью невидимыми.
Опустим пластину из оргстекла в сосуд с прозрачными стенками. Ее прекрасно видно. А теперь зальем в сосуд подсолнечное масло, и пластина стала почти невидимой. Дело в том, что световые лучи на границе масла и оргстекла почти не преломляются, вот пластина и становится пластиной невидимой.
Видео:Преломление светаСкачать
Ход лучей в треугольной призме
В различных оптических приборах довольно часто используют треугольную призму, которая может быть изготовлена из такого материала, как стекло, или же из других прозрачных материалов.
При прохождении через треугольную призму лучи преломляются на обеих поверхностях. Угол φ между преломляющими поверхностями призмы называется преломляющим углом призмы. Угол отклонения Θ зависит от показателя преломления n призмы и угла падения α.
Видео:Преломление луча призмойСкачать
Интересные факты
Все вы знаете известную считалочку для запоминания цветов радуги. Но почему эти цвета всегда располагаются в таком порядке, как они получаются из белого солнечного света, и почему в радуге нет никаких других цветов кроме этих семи известно не каждому. Объяснить это легче на опытах и наблюдениях.
Красивые радужные цвета мы можем видеть на мыльных пленках, особенно если эти пленки совсем тонкие. Мыльная жидкость стекает вниз и в этом же направлении движутся цветные полосы.
Возьмем прозрачную крышку от пластиковой коробки, а теперь наклоним ее так, чтобы от крышки отразился белый экран компьютера. На крышке появятся неожиданно яркие радужные разводы. А какие прекрасные радужные цвета видны при отражении света от компакт-диска, особенно если посветить на диск фонариком и отбросить эту радужную картину на стену.
Первым появление радужных цветов попробовал объяснить великий английский физик Исаак Ньютон. Он пропустил в темную комнату узкий пучок солнечного света, а на его пути поставил треугольную призму. Выходящий из призмы свет образует цветную полосу, которая называется спектром. Меньше всего в спектре отклоняется красный цвет, а сильнее всего — фиолетовый. Все остальные цвета радуги располагаются между этими двумя без особо резких границ.
Видео:Спорим, ты не знал такого о преломлении?Скачать
Лабораторный опыт
В качестве источник белого света выберем яркий светодиодный фонарик. Чтобы сформировать узкий световой пучок поставим одну щель сразу за фонариком, а вторую непосредственно перед призмой. На экране видна яркая радужная полоса, где хорошо различимы красный цвет, зеленый и синий. Они и составляют основу видимого спектра.
Поставим на пути цветного пучка цилиндрическую линзу и настроим ее на резкость – пучок на экране собрался в узкую полоску, все цвета спектра смешались, и полоска снова стала белой.
Почему же призма превращает белый свет в радугу? Оказывается, дело в том, что все цвета радуги уже содержатся в белом свете. Показатель преломления стекла различается для лучей разного цвета. Поэтому призма отклоняет эти лучи по-разному.
Каждый отдельный цвет радуги является чистым и его уже нельзя расщепить на другие цвета. Ньютон доказал это на опыте, выделив из всего спектра узкий пучок и поставив на его пути вторую призму, в которой никакого расщепления уже не произошло.
Теперь мы знаете, как призма разлагает белый свет на отдельные цвета. А в радуге капельки воды работают как маленькие призмы.
Но если посветить фонариком на компакт-диск работает немного другой принцип, несвязанный с преломление света через призму. Эти принципы будут изучаться в дальнейшем, на уроках физики, посвященным свету и волновой природе света.
Видео:Физика 9 класс (Урок№29 - Преломление света.)Скачать
Луч преломления в треугольнике
Каждая точка, до которой доходит световое возбуждение, является, в свою очередь, центром вторичных волн; поверхность, огибающая в некоторый момент времени эти вторичные волны, указывает положение к этому моменту фронта действительно распространяющейся волны.
- отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром, проведенным к границе раздела двух сред в точке падения;
- угол падения α равен углу отражения γ:
α = γ
Вывод на основе принципа Гюйгенса:
Предположим, что плоская волна (фронт волны АВ), распространяющаяся в вакууме вдоль направления I со скоростью с, падает на границу раздела двух сред. Когда фронт волны АВ достигнет отражающей поверхности в точке А, эта точка начнет излучать вторичную волну.
Для прохождения волной расстояния ВС требуется время Δt = BC/υ. За это же время фронт вторичной волны достигнет точек полусферы, радиус AD которой равен: υΔt = ВС. Положение фронта отраженной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC, а направление распространения этой волны – лучом II. Из равенства треугольников ABC и ADC вытекает закон отражения: угол падения α равен углу отражения γ.
- луч падающий, луч преломленный и перпендикуляр, проведенный к границе раздела в точке падения, лежат в одной плоскости;
- отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред.
Вывод закона преломления. Предположим, что плоская волна (фронт волны АВ), распространяющаяся в вакууме вдоль направления I со скоростью с, падает на границу раздела со средой, в которой скорость ее распространения равна v.
Пусть время, затрачиваемое волной для прохождения пути ВС, равно Δt. Тогда ВС = сΔt. За это же время фронт волны, возбуждаемой точкой А в среде со скоростью u, достигнет точек полусферы, радиус которой AD = vΔt. Положение фронта преломленной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC, а направление ее распространения – лучом III. Из рис. видно, что
, т.е. .
Отсюда следует закон Снелиуса:
П ринцип Ферма : свет распространяется между двумя точками по пути, для прохождения которого необходимо наименьшее время.
Покажем применение этого принципа к решению той же задачи о преломлении света.
Луч от источника света S, расположенного в вакууме идет до точки В, расположенной в некоторой среде за границей раздела
В каждой среде кратчайшим путем будут прямые SA и AB. Точку A охарактеризуем расстоянием x от перпендикуляра, опущенного из источника на границу раздела. Определим время, затраченное на прохождение пути SAB:
.
Для нахождения минимума найдем первую производную от τ по х и приравняем ее к нулю:
,
отсюда приходим к тому же выражению, что получено исходя из принципа Гюйгенса: .
Следствия из принципа Ферма:
1. Обратимость световых лучей: если обратить луч III, заставив его падать на границу раздела под углом β, то преломленный луч в первой среде будет распространяться под углом α, т. е. пойдет в обратном направлении вдоль луча I.
2. Если свет распространяется из среды с большим показателем преломления n1 (оптически более плотной) в среду с меньшим показателем преломления n2 (оптически менее плотной) ( n1 > n2 ), например из стекла в воздух, то, согласно закону преломления, преломленный луч удаляется от нормали и угол преломления β больше, чем угол падения α:
3. С увеличением угла падения увеличивается угол преломления, до тех пор, пока при некотором угле падения (α = αпр) угол преломления не окажется равным π/2.
Полное отражение
Угол αпр называется предельным углом полного отражения . При углах падения α > αпр весь падающий свет полностью отражается.
По мере приближения угла падения к предельному, интенсивность преломленного луча уменьшается, а отраженного – растет.
Если α = αпр , то интенсивность преломленного луча обращается в нуль, а интенсивность отраженного равна интенсивности падающего.
Таким образом, при углах падения в пределах от αпр до π/2, луч не преломляется, а полностью отражается в первую среду, причем интенсивности отраженного и падающего лучей одинаковы. Это явление называется полным отражением .
В случае, если вторая среда — воздух
Преломление света в плоскопараллельной пластине
Плоскопараллельная пластина — это оптический прибор, представляющий собой ограниченный параллельными поверхностями слой однородной среды, прозрачной в некотором интервале длин волн λ оптического излучения.
Основным оптическим свойством пластины является то, что луч, падающий на пластину, в результате двукратного преломления на поверхностях пластины параллельно смещается на некоторую величину δL относительно исходного луча
Величина смещения в плоскопараллельной пластине
Величина сдвига луча света δL зависит:
- от угла падения света α ,
- от толщины пластины d ,
- от показателя преломления вещества, из которого изготовлена плоскопараллельная пластина n .
C увеличением любого из этих параметров смещение луча света увеличивается.
Смещение луча можно выразить через угол падения
Из этого выражения видно, что величина смещения луча в пластине зависит от угла падения, толщины пластины и показателя преломления. Из формулы видно, что отклонения луча не происходит, если:
- угол падения равен нулю: α = 0 ,
- относительный показатель преломления равен единице (преломления не происходит): n = 1 ,
- толщина пластины равна нулю: d = 0
Ход луча через треугольную призму
Призма — оптический элемент из прозрачного материала (например, оптического стекла) в форме геометрического тела — призмы, имеющий плоские полированные грани, через которые входит и выходит свет. Свет в призме преломляется. Важнейшей характеристикой призмы является показатель преломления материала, из которого она изготовлена.
На призму из точки S падает луч света. Испытав 2 преломления, он выходит с отклонением на угол δ, который называется угол отклонения луча. Угол при вершине призмы АВС – φ называется преломляющим углом.
Если световой луч падает на преломляющую грань призмы под произвольным углом , то угол отклонения луча призмой определяется формулой
Если световой луч падает на преломляющую грань призмы под малым углом (практически перпендикулярно преломляющей грани призмы), то угол отклонения луча призмой определяется формулой
Если призма сделана из материала, показатель преломления которого больше, чем у среды, в которой находится призма, отклонение лучей происходит к основанию призмы.
Лучи различного цвета (различной частоты или длины волны) отклоняются призмой по-разному. В случае нормальной дисперсии (показатель преломления материала тем выше, чем больше частота светового излучения) призма наиболее сильно отклоняет фиолетовые лучи; наименее — красные.
Видео:03. Преломление светаСкачать
Преломление света.
Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: закон преломления света, полное внутреннее отражение.
На границе раздела двух прозрачных сред наряду с отражением света наблюдается его преломление — свет, переходя в другую среду, меняет направление своего распространения.
Преломление светового луча происходит при его наклонном падении на поверхность раздела (правда, не всегда — читайте дальше про полное внутреннее отражение). Если же луч падает перпендикулярно поверхности, то преломления не будет — во второй среде луч сохранит своё направление и также пойдёт перпендикулярно поверхности.
Видео:Ход лучей через призмуСкачать
Закон преломления (частный случай).
Мы начнём с частного случая, когда одна из сред является воздухом. Именно такая ситуация присутствует в подавляющем большинстве задач. Мы обсудим соответствующий частный случай закона преломления, а уж затем дадим самую общую его формулировку.
Предположим, что луч света, идущий в воздухе, наклонно падает на поверхность стекла, воды или какой-либо другой прозрачной среды. При переходе в среду луч преломляется, и его дальнейший ход показан на рис. 1 .
Рис. 1. Преломление луча на границе «воздух–среда» |
В точке падения проведён перпендикуляр (или, как ещё говорят, нормаль) к поверхности среды. Луч , как и раньше, называется падающим лучом, а угол между падающим лучом и нормалью — углом падения. Луч — это преломлённый луч; угол между преломлённым лучом и нормалью к поверхности называется углом преломления.
Всякая прозрачная среда характеризуется величиной , которая называется показателем преломления этой среды. Показатели преломления различных сред можно найти в таблицах. Например, для стекла , а для воды . Вообще, у любой среды ; показатель преломления равен единице только в вакууме. У воздуха , поэтому для воздуха с достаточной точностью можно полагать в задачах (в оптике воздух не сильно отличается от вакуума).
Закон преломления (переход «воздух–среда»).
1) Падающий луч, преломлённый луч и нормаль к поверхности, проведённая в точке падения, лежат в одной плоскости.
2) Отношение синуса угла падения к синусу угла преломления равно показателю преломления среды:
Поскольку из соотношения (1) следует, что , то есть — угол преломления меньше угла падения. Запоминаем: переходя из воздуха в среду, луч после преломления идёт ближе к нормали.
Показатель преломления непосредственно связан со скоростью распространения света в данной среде. Эта скорость всегда меньше скорости света в вакууме: . И вот оказывается,что
Почему так получается, мы с вами поймём при изучении волновой оптики. А пока скомбинируем формулы . (1) и (2) :
Так как показатель преломления воздуха очень близок единице, мы можем считать, что скорость света в воздухе примерно равна скорости света в вакууме . Приняв это во внимание и глядя на формулу . (3) , делаем вывод: отношение синуса угла падения к синусу угла преломления равно отношению скорости света в воздухе к скорости света в среде.
Видео:Дисперсия и спектр светаСкачать
Обратимость световых лучей.
Теперь рассмотрим обратный ход луча: его преломление при переходе из среды в воздух. Здесь нам окажет помощь следующий полезный принцип.
Принцип обратимости световых лучей. Траектория луча не зависит от того, в прямом или обратном направлении распространяется луч. Двигаясь в обратном направлении, луч пойдёт в точности по тому же пути, что и в прямом направлении.
Согласно принципу обратимости, при переходе из среды в воздух луч пойдёт по той же самой траектории, что и при соответствующем переходе из воздуха в среду (рис. 2 ) Единственное отличие рис. 2 от рис. 1 состоит в том, что направление луча поменялось на противоположное.
Рис. 2. Преломление луча на границе «среда–воздух» |
Раз геометрическая картинка не изменилась, той же самой останется и формула (1) : отношение синуса угла к синусу угла по-прежнему равно показателю преломления среды. Правда, теперь углы поменялись ролями: угол стал углом падения, а угол — углом преломления.
В любом случае, как бы ни шёл луч — из воздуха в среду или из среды в воздух — работает следующее простое правило. Берём два угла — угол падения и угол преломления; отношение синуса большего угла к синусу меньшего угла равно показателю преломления среды.
Теперь мы целиком подготовлены для того, чтобы обсудить закон преломления в самом общем случае.
Видео:Закон преломления света. Полное отражение | Физика 11 класс #28 | ИнфоурокСкачать
Закон преломления (общий случай).
Пусть свет переходит из среды 1 с показателем преломления в среду 2 с показателем преломления . Среда с большим показателем преломления называется оптически более плотной; соответственно, среда с меньшим показателем преломления называется оптически менее плотной.
Переходя из оптически менее плотной среды в оптически более плотную, световой луч после преломления идёт ближе к нормали (рис. 3 ). В этом случае угол падения больше угла преломления: .
Рис. 3. |
Наоборот, переходя из оптически более плотной среды в оптически менее плотную, луч отклоняется дальше от нормали (рис. 4 ). Здесь угол падения меньше угла преломления:
Рис. 4. |
Оказывается, оба этих случая охватываются одной формулой — общим законом преломления, справедливым для любых двух прозрачных сред.
Закон преломления.
1) Падающий луч, преломлённый луч и нормаль к поверхности раздела сред, проведённая в точке падения, лежат в одной плоскости.
2) Отношение синуса угла падения к синусу угла преломления равно отношению показателя преломления второй среды к показателю преломления первой среды:
Нетрудно видеть, что сформулированный ранее закон преломления для перехода «воздух–среда» является частным случаем данного закона. В самом деле, полагая в формуле (4) , мы придём к формуле (1) .
Вспомним теперь, что показатель преломления — это отношение скорости света в вакууме к скорости света в данной среде: . Подставляя это в (4) , получим:
Формула (5) естественным образом обобщает формулу (3) . Отношение синуса угла падения к синусу угла преломления равно отношению скорости света в первой среде к скорости света во второй среде.
Видео:Урок 202 (осн). Преломление света. Законы преломленияСкачать
Полное внутреннее отражение.
При переходе световых лучей из оптически более плотной среды в оптически менее плотную наблюдается интересное явление — полное внутреннее отражение. Давайте разберёмся, что это такое.
Будем считать для определённости, что свет идёт из воды в воздух. Предположим, что в глубине водоёма находится точечный источник света , испускающий лучи во все стороны. Мы рассмотрим некоторые из этих лучей (рис. 5 ).
Рис. 5. Полное внутреннее отражение |
Луч падает на поверхность воды под наименьшим углом. Этот луч частично преломляется (луч ) и частично отражается назад в воду (луч ). Таким образом, часть энергии падающего луча передаётся преломлённому лучу, а оставшаяся часть энергии -отражённому лучу.
Угол падения луча больше. Этот луч также разделяется на два луча — преломлённый и отражённый. Но энергия исходного луча распределяется между ними по-другому: преломлённый луч будет тусклее, чем луч (то есть получит меньшую долю энергии), а отражённый луч — соответственно ярче, чем луч (он получит большую долю энергии).
По мере увеличения угла падения прослеживается та же закономерность: всё большая доля энергии падающего луча достаётся отражённому лучу, и всё меньшая — преломлённому лучу. Преломлённый луч становится всё тусклее и тусклее, и в какой-то момент исчезает совсем!
Это исчезновение происходит при достижении угла падения , которому отвечает угол преломления . В данной ситуации преломлённый луч должен был бы пойти параллельно поверхности воды, да идти уже нечему — вся энергия падающего луча целиком досталась отражённому лучу .
При дальнейшем увеличении угла падения преломлённый луч и подавно будет отсутствовать.
Описанное явление и есть полное внутреннее отражение. Вода не выпускает наружу лучи с углами падения, равными или превышающими некоторое значение — все такие лучи целиком отражаются назад в воду. Угол называется предельным углом полного отражения.
Величину легко найти из закона преломления. Имеем:
Так, для воды предельный угол полного отражения равен:
Явление полного внутреннего отражения вы легко можете наблюдать дома. Налейте воду в стакан, поднимите его и смотрите на поверхность воды чуть снизу сквозь стенку стакана. Вы увидите серебристый блеск поверхности — вследствие полного внутреннего отражения она ведёт себя подобно зеркалу.
Важнейшим техническим применением полного внутреннего отражения является волоконная оптика. Световые лучи, запущенные внутрь оптоволоконного кабеля (световода) почти параллельно его оси, падают на поверхность под большими углами и целиком, без потери энергии отражаются назад внутрь кабеля. Многократно отражаясь, лучи идут всё дальше и дальше, перенося энергию на значительное расстояние. Волоконно-оптическая связь применяется, например, в сетях кабельного телевидения и высокоскоростного доступа в Интернет.
📹 Видео
Почему луч света преломляется?Скачать
Полное внутреннее отражениеСкачать
Изменение направления распространения света призмойСкачать
Законы преломления и отражения | Оптика | ЕГЭ по физике | Николай Ньютон. ТехноскулСкачать
ПРЕЛОМЛЕНИЕ СВЕТА закон 8 класс физика ПерышкинСкачать
Преломление света, закон преломления света, полное внутреннее отражение. 8 класс.Скачать
Урок 205 (осн). Прохождение света через плоскопараллельную пластинку и призмуСкачать
Преломление света. Закон преломления света | Физика 8 класс #29 | ИнфоурокСкачать
Урок 381. Принцип Гюйгенса. Вывод законов отражения и преломления волнСкачать
Преломление света. Физический смысл показателя преломления | Физика 9 класс #48 | ИнфоурокСкачать
Ложка в воде. Преломление света. ФизикаСкачать