Метки
Эти сложные математические задачи мы взяли из обычных учебников для начальной школы. Родители возмущены и недоумевают: «Что за безобразие, как их вообще решить без иксов и систем уравнений?»
Похоже, Алла Борисовна знала об этой проблеме еще в 1980 году. Нынче в школе первый класс — действительно что-то вроде института. Но, в отличие от эмоционального кандидата наук из «Песенки первоклассника», мы не станем над задачами плакать. Попробуем найти для них простые решения.
Видео:Площадь треугольника. Как найти площадь треугольника?Скачать

Сложные математические задачи
Круги, треугольники и квадраты
Задачка для первого класса со звездочкой (повышенной сложности). Требуется найти, чему равна сумма круга, треугольника и квадрата.
У взрослого человека, знакомого с алгеброй, первое побуждение — составить систему из трех уравнений. Если круг — это х, квадрат — y, а треугольник — z, получаем:
Отсюда 30 — 2х = 24; 2х = 6; х = 3. Круг (х) равен 3, значит квадрат (у) равен 7, а треугольник (z) — 17. Сумма круга, треугольника и квадрата дает нам 27 кг.
Но системы уравнений начинают изучать только на уроках алгебры в 7-м классе. Может есть более простое решение? Некоторые родители в комментариях предлагают решать задачу методом подбора значений. Но, как по мне, это больше похоже на гадание, чем на решение.
Посмотрим на наши фигуры еще раз. На первых трех рисунках у нас два квадрата, два круга и два треугольника. Всё это в сумме дает 54. Значит половина — квадрат круг и треугольник равна 27 (54 : 2 = 27).
Или по-другому: круг плюс квадрат 10, а треугольник плюс квадрат 24, значит треугольник на 14 килограмм тяжелее круга. То есть, если круг принять за х, то треугольник равен х + 14. Тогда х + х + 14 = 20; х = 3, и так далее.
Катя и 4 открытки
Эту задачку я обнаружил в заданиях, которые моему сыну-третьекласснику предстояло выполнять на летних каникулах. Это, конечно, не бином Ньютона, но как обойтись без уравнений и только методами начальной школы? Да и много ли детей смогут решить такое без папы, который «силен в математике»?
Без переменных опять не получается. Положим, что первая открытка стоила a рублей, вторая — b, третья — с, четвертая — d. Тогда b+c+d=42; a+c+d=40; a+b+d=38; a+b+c=36. Что теперь делать с этим богатством?
Ясно, что нужно что-то складывать, но не очень понятно, что с чем и на каком основании. Допустим, мы сложили все левые части наших выражений. Получается 3а+3b+3c+3d или 3(a+d+c+d). Можно заметить, что это утроенная сумма стоимости всех открыток. Отсюда находим ее значение (42+40+38+36):3=52 рубля.
Теперь уже дело техники. 52-42=10 — первая открытка; 52-40=12 — вторая открытка; 52-38=14 — третья открытка; 52-36=16 — четвертая открытка. Отметим, что в комментариях умные взрослые с двумя высшими предлагают «нарисовать простой линейный график», «решать методом ненаучного тыка», «чаще подходить к домашке, задача, мол, и яйца выеденного не стоит».
А как ты считаешь, такие задачи помогают ученикам младших классов развивать логику или напрочь отбивают желание учиться? Взрослый-то их решит легко, но сможет ли объяснить ребенку? Ребенок раз не решит, два не решит и сделает вывод, что никогда не сможет понять эту ужасную математику. А мама вздохнет и скажет: «Что поделаешь, мой ребенок — гуманитарий, ему не дано…»
Видео:Задача про квадрат в треугольнике и 2 способа её решения: с помощью геометрии и с помощью логикиСкачать

Квадрат плюс два треугольника
Сумму из трех чисел ( круг, квадрат, треугольник — схема примера) можно записать шестью разными способами. Нарисуй в тетради все возможные суммы.
1).круг+квадрат+треугольник
2). круг+?+?
3). квадрат+?+?
4). ?+?+?
5). треугольник+?+?
6). ?+?+?
*Как ты думаешь,какие из этих сумм имеют одинаковые значения?
*Выбери любые три числа и проверь свое предположение: подставь числа в схемы и вычисли суммы
Видео:Решали пол-урока, а оказалось очень простоСкачать

Решение треугольников онлайн
С помощю этого онлайн калькулятора можно решить треугольники, т.е. найти неизвестные элементы (стороны, углы) треугольника. Теоретическую часть и численные примеры смотрите ниже.
Решение треугольников − это нахождение всех его элементов (трех сторон и трех углов) по трем известным элементам (сторонам и углам). В статье Треугольники. Признаки равенства треугольников рассматриваются условия, при которых два треугольника оказываются равными друг друга. Как следует из статьи, треугольник однозначно определяется тремя элементами. Это:
- Три стороны треугольника.
- Две стороны треугольника и угол между ними.
- Две стороны и угол противостоящий к одному из этих сторон треугольника.
- Одна сторона и любые два угла.
Заметим, что если у треугольника известны два угла, то легко найти третий угол, т.к. сумма всех углов треугольника равна 180°.
Видео:Задача, которую исключили из экзамена в АмерикеСкачать

Решение треугольника по трем сторонам
Пусть известны три стороны треугольника a, b, c (Рис.1). Найдем 
|  | 
|  | 
|  | 
|  | (1) | 
|  | (2) | 
Из (1) и (2) находим cosA, cosB и углы A и B (используя калькулятор). Далее, угол C находим из выражения
|  . | 
Пример 1. Известны стороны треугольника ABC: 

Решение. Из формул (1) и (2) находим:
|   . | 
|   . | 
|  ,  . | 
И, наконец, находим угол C:
|   | 
Видео:Математика 2 класс. «Периметр треугольника, прямоугольника и квадрата»Скачать

Решение треугольника по двум сторонам и углу между ними
Пусть известны стороны треугольника a и b и угол между ними C (Рис.2). Найдем сторону c и углы A и B.
|  | 
Найдем сторону c используя теорему косинусов:
|  . | 
|  . | 
Далее, из формулы
|  . | 
|  . | (3) | 
Далее из (3) с помощью калькулятора находим угол A.
Поскольку уже нам известны два угла то находим третий:
|  . | 
Пример 2. Известны две стороны треугольника ABC: 

Решение. Иcпользуя теорму косинусов найдем сторону c:
|  , | 
|    . | 
Из формулы (3) найдем cosA:
|   | 
|  . | 
Поскольку уже нам известны два угла то находим третий:
|   . | 
Видео:Теорема Пифагора. 8 КЛАСС | Математика | TutorOnlineСкачать

Решение треугольника по стороне и любым двум углам
Пусть известна сторона треугольника a и углы A и B (Рис.4). Найдем стороны b и c и угол C.
|  | 
Так как, уже известны два угла, то можно найти третий:
|  . | 
Далее, для находждения сторон b и c воспользуемся тероемой синусов:
|  ,  . | 
|  ,  . | 
Пример 3. Известна одна сторона треугольника ABC: 

Решение. Поскольку известны два угла, то легко можно найти третий угол С:
|   | 
Найдем сторону b. Из теоремы синусов имеем:
|  | 
|  | 
Найдем сторону с. Из теоремы синусов имеем:
📺 Видео
Чему равна площадь квадрата , размещённого в треугольнике.Скачать

Периметр треугольника. Как найти периметр треугольника?Скачать

АСПЕКТЫ. ГАРМОНИЧНЫЕ И НАПРЯЖЕННЫЕ. ПОЛЬЗА И ВРЕД.Скачать

Этой задачей русские дети 10 лет мучили американцев. Американцы не понимали, что делают не такСкачать

Найдите площадь треугольника на рисунке ★ Два способа решенияСкачать

Задача по геометрии на прямоугольный треугольник и теорему Пифагора из реального ОГЭ по математикеСкачать

Площадь Сечения: Разбираемся в Тайнах ГеометрииСкачать

Думала не справлюсь😂 #shortsСкачать

Профильный ЕГЭ 2024. Задача 1. Прямоугольный треугольник. 10 классСкачать

✓ Квадрат вписан в прямоугольный треугольник | Ботай со мной #129 | Борис ТрушинСкачать

Задача, которую боятсяСкачать

9 класс, 15 урок, Решение треугольниковСкачать

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Как найти площадь треугольника без формулы?Скачать





