Презентация была опубликована 8 лет назад пользователемОльга Анохина
- Похожие презентации
- Презентация на тему: » Тема: Прямоугольные треугольники. Из истории математики. Из истории математики. Прямоугольный треугольник занимает почётное место в вавилонской геометрии,» — Транскрипт:
- Что мы знаем об истории треугольника
- Описание презентации по отдельным слайдам:
- Краткое описание документа:
- Треугольник: Историческая справка
- 🔍 Видео
Похожие презентации
Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать
Презентация на тему: » Тема: Прямоугольные треугольники. Из истории математики. Из истории математики. Прямоугольный треугольник занимает почётное место в вавилонской геометрии,» — Транскрипт:
1 Тема: Прямоугольные треугольники
2 Из истории математики. Из истории математики. Прямоугольный треугольник занимает почётное место в вавилонской геометрии, упоминание о нём часто встречается в папирусе Ахмеса. Евклид употребляет выражения: «стороны, заключающие прямой угол», — для катетов; «сторона, стягивающая прямой угол», — для гипотенузы.
3 О истории гипотенузы. Термин гипотенуза происходит от греческого hypoteinsa, означающего тянущаяся под чем либо, стягивающая. Слово берёт начало от образа древнеегипетских арф, на которых струны натягивались на концы двух взаимно перпендикулярных подставок.
4 О истории катета. Термин катет происходит от греческого слова «катетос », которое означало отвес, перпендикуляр. В средние века словом катет означали высоту прямоугольного треугольника, в то время, как другие его стороны называли гипотенузой, соответственно основанием. В XVII веке слово катет начинает применяться в современном смысле и широко распространяется, начиная с XVIII века.
6 Свойство 1 Сумма двух острых углов прямоугольного треугольника равна 90º
7 Свойство 2 Катет прямоугольного треугольника, лежащий против угла в 30º,равен половине гипотенузы.
8 Свойство 3 Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета равен 30º
Видео:Нахождение стороны прямоугольного треугольникаСкачать
Что мы знаем об истории треугольника
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
«Актуальность создания школьных служб примирения/медиации в образовательных организациях»
Свидетельство и скидка на обучение каждому участнику
Описание презентации по отдельным слайдам:
Автор: ученик 7 класса: Буянов Юрий Муниципальное бюджетное образовательное учреждение «Большовская СОШ» Х. Большой 2013 г. Что мы знаем об истории треугольника?
План исследования: Когда началась история треугольника? Какие древние математики изучали треугольник? Какие открытия совершили математики, изучая треугольник? Какие выводы можно сделать?
Первое упоминание о треугольнике и его свойствах мы находим в египетских папирусах Которым более 4000лет.Через 2000лет в древней Греции
Математический папирус Ахмеса (также известен как папирус Ринда или папирус Райнда) — древнеегипетское учебное руководство по арифметике и геометрии
Треугольники в древности. Древние рисовали треугольники В древнем искусстве очень широко распространяются изображения равностороннего треугольника и ромба. Первобытные люди штамповали треугольники и ромбы на разных изделиях. Вожди племен северо-американских индейцев носили на груди символ власти: равносторонний треугольник с точкой в центре, в Африке женщины туарегов также украшают себя большими пластинами из равносторонних треугольников. Равносторонние треугольники рисовали — на изображениях священных животных
Символы. Также треугольники могут образовать различные символы. Два треугольника, лежащие горизонтально и соприкасающиеся вершинам, — это лунный символ, растущая и убывающая Луна У алхимиков два треугольника — сущность и субстанция Треугольники, символизирующие стихии, таковы: огонь (обращенный вершиной вверх), воду (обращенный вершиной вниз), воздух (обращенный усеченной вершиной вверх), землю (обращенный усеченной вершиной вниз). Два смыкающихся треугольника — союз противоположностей, которые становятся «жидким огнем» или «огненной водой»
2.Какие древние математики изучали треугольник? Крупнейший древнегреческий историк Геродот (V век до нашей эры) оставил описание того, как египтяне после каждого разлива Нила заново размечали плодородные участки его берегов, с которых ушла вода. С этого и началась геометрия – «землемерие» (от греческого «гео» – «земля» и «метрео» «измеряю»).
2.Какие древние математики изучали треугольник? Древние землемеры выполняли геометрические построения, измеряли длины и площади. Астрологи рассчитывали расположение небесных светил – все это требовало весьма обширных познаний о свойствах плоских и пространственных фигур, и в первую очередь о треугольнике. Изображение треугольников и задачи на треугольники встречаются в египетских папирусах, которым более 4000 лет, в старинных индийских книгах и других древних документах. Уже тогда была известна теорема, получившая впоследствии название теоремы Пифагора, которая применялась для построения прямых углов на местности с помощью веревочного треугольника со сторонами 3, 4, 5 (египетский треугольник).
Великий древнегреческий ученый Пифагор родился на острове Самос в VI веке до н.э. Теорема Пифагора Если дан нам треугольник, И притом с прямым углом, То квадрат гипотенузы Мы всегда легко найдем: Катеты в квадрат возводим, Сумму степеней находим – И таким простым путем К результату мы придем 2.Какие древние математики изучали треугольник? Пифагор
Через 2000 лет в древней Греции учение о треугольнике достигает высокого уровня. Известны такие древнегреческие ученые, как Архимед, Пифагор, Фалес. Учение о треугольнике развивалось в ионийской школе, основанной в VII веке до нашей эры Фалесом, затем в школе Пифагора. Древние греки решили упорядочить накопленные сведения о треугольнике и написали много трудов. Наиболее совершенной оказалась работа Евклида «Начала»(365-300 до н.э.). 2.Какие древние математики изучали треугольник?
2.Какие древние математики изучали треугольник? «Начала» Евклида состоят из тринадцати книг (отделов, или частей). В 1-ой книге рассматриваются основные свойства треугольников, прямоугольников, параллелограммов и производится сравнение их площадей. Заканчивается книга теоремой Пифагора . Главный труд Евклида «Начала» Евклид
2.Какие древние математики изучали треугольник? Интересно посмотреть, как строится геометрия Евклида. Там есть первая процедура: построение с помощью циркуля и линейки равностороннего треугольника.
Архимед (ок. 287-212 гг. до н. э.) родился в городе Сиракузы на острове Сицилия Основные работы Архимеда касались различных практических приложений математики (геометрии), физики, гидростатики и механики 2.Какие древние математики изучали треугольник? «Архимедовы штаны во все стороны равны» Знаменитое выражение, которое применяется к теореме Пифагора. Архимед
2.Какие древние математики изучали треугольник? Фалес Важнейшей заслугой Фалеса в области математики , перенесение им из Египта в Грецию первых начал теоретической элементарной геометрии. , — Вертикальные углы равны. Углы при основании равнобедренного треугольника равны; Треугольник определяется стороной и прилежащими к ней двумя углами. — Диаметр делит круг на две равные части. Фалес Милетский жил в самом конце 7 — первой половине 6 в. до н. э. Фалес был уроженцем греческого торгового города Милета, расположенного в Малой Азии на берегу Эгейского Моря.
3. Какие открытия совершили математики, изучая треугольник? Рене Декарт (1596-1650) В «Геометрии» Декарт заложил основы аналитической геометрии. Геометрия» Декарта оказала огромное влияние на развитие математики, и почти 150 лет алгебра и аналитическая геометрия развивались преимущественно в направлениях, указанных Декартом . ПОНСЕЛЕ (Poncelet) Жан Виктор (1788-1867) , французский математик и инженер. Заложил основы проективной геометрии. В 1822 году французский математик и механик Жан Виктор Понселе опубликовал «Трактат о проективных свойствах фигур».
3. Какие открытия совершили математики, изучая треугольник? Эйлер (Леонгард, Euler) один из величайших математиков XVIII столетия, родился в 1707 г. Были открыты новые теоремы о свойствах треугольника: Теоремы Эйлера об окружности.
3. Какие открытия совершили математики, изучая треугольник? Тригонометрия, как отдельный предмет впервые рассматривается в труде азербайджанского математика и астронома Насиреддина Туей (1201-1274) «Трактат о полном четырехстороннике». Йоганн МЮЛЛЕР 1436-1476 В Европе аналогичное открытие сделал немецкий ученый Иоганн Мюллер (1436-1476) в сочинении «О треугольниках всех видов».
3. Какие открытия совершили математики, изучая треугольник? Красивая теорема Наполеона. «Если на сторонах треугольника во внешнюю сторону построить равносторонние треугольники, то их центры будут вершинами равностороннего треугольника» Наполеон I, — Наполеон Бонапарт (Napoléon Bonaparte) (15.8.1769, Аяччо, Корсика, — 5.5.1821, о. Св. Елены),
3. Какие открытия совершили математики, изучая треугольник? Морли (Morley) Эдвард Уильямс (29.I.1839–1923) Открытие в геометрии треугольника есть и в нашем веке. В 1904 году американский математик Ф.Морли вывел теорему о трисектрисах угла, теоремы о замечательных точках треугольника Эдвард Морли. Эдвард Морли.
4. Какие выводы можно сделать? Треугольник — простейшая плоская фигура: три вершины и три стороны. Но с древнейших времен и до наших дней математики занимаются изучением треугольника. За это время было сделано много важных открытий и даже создана новая наука – тригонометрия… Можно сделать вывод: треугольник важнейшая и неисчерпаемая фигура в геометрии.
Краткое описание документа:
Что такое треугольник?Какие древние математики изучали треугольник?Какие открытия совершили математики, изучая треугольник?Какие выводы можно сделать?
Треугольник по праву считается простейшей из фигур.
Основными элементами треугольника ABC являются:Вершины — точки A, B, и C;Стороны — отрезки a = BC, b = AC и c = AB, соединяющие вершины;Углы, образованные тремя парами сторон. Углы часто обозначают так же, как и вершины, — буквами A, B и C.
1. Из каких основных элементов состоит треугольник?
2.Какие древние математики изучали треугольник?
Крупнейший древнегреческий историк Геродот (V век до нашей эры) оставил описание того, как египтяне после каждого разлива Нила заново размечали плодородные участки его берегов, с которых ушла вода. С этого и началась геометрия – «землемерие» (от греческого «гео» – «земля» и «метрео» «измеряю»).
2.Какие древние математики изучали треугольник?
Древние землемеры выполняли геометрические построения, измеряли длины и площади. Астрологи рассчитывали расположение небесных светил – все это требовало весьма обширных познаний о свойствах плоских и пространственных фигур, и в первую очередь о треугольнике. Изображение треугольников и задачи на треугольники встречаются в египетских папирусах, которым более 4000 лет, в старинных индийских книгах и других древних документах. Уже тогда была известна теорема, получившая впоследствии название теоремы Пифагора, которая применялась для построения прямых углов на местности с помощью веревочного треугольника со сторонами 3, 4, 5 (египетский треугольник).
Великий древнегреческий ученый Пифагор родился на острове Самос в VI веке до н.э.
Теорема ПифагораЕсли дан нам треугольник,И притом с прямым углом, То квадрат гипотенузы Мы всегда легко найдем:Катеты в квадрат возводим, Сумму степеней находим – И таким простым путемК результату мы придем
2.Какие древние математики изучали треугольник?
Пифагор
Через 2000 лет в древней Греции учение о треугольнике достигает высокого уровня. Известны такие древнегреческие ученые, как Архимед, Пифагор, Фалес. Учение о треугольнике развивалось в ионийской школе, основанной в VII веке до нашей эры Фалесом, затем в школе Пифагора. Древние греки решили упорядочить накопленные сведения о треугольнике и написали много трудов. Наиболее совершенной оказалась работа Евклида «Начала»(365-300 до н.э.).
2.Какие древние математики изучали треугольник?
2.Какие древние математики изучали треугольник?
«Начала» Евклида состоят из тринадцати книг (отделов, или частей). В 1-ой книге рассматриваются основные свойства треугольников, прямоугольников, параллелограммов и производится сравнение их площадей. Заканчивается книга теоремой Пифагора .
Главный труд Евклида «Начала»
Евклид
2.Какие древние математики изучали треугольник?
Интересно посмотреть, как строится геометрия Евклида. Там есть первая процедура: построение с помощью циркуля и линейки равностороннего треугольника.
Архимед (ок. 287-212 гг. до н. э.) родился в городе Сиракузы на острове Сицилия
Основные работы Архимеда касались различных практических приложений математики (геометрии), физики, гидростатики и механики
2.Какие древние математики изучали треугольник?
«Архимедовы штаны во все стороны равны»
Знаменитое выражение, которое применяется к теореме Пифагора.
Архимед
2.Какие древние математики изучали треугольник?
Фалес
Важнейшей заслугой Фалеса в области математики , перенесение им из Египта в Грецию первых начал теоретической элементарной геометрии. ,- Вертикальные углы равны. Углы при основании равнобедренного треугольника равны; Треугольник определяется стороной и прилежащими к ней двумя углами. — Диаметр делит круг на две равные части.
Фалес Милетский жил в самом конце 7 — первой половине 6 в. до н. э. Фалес был уроженцем греческого торгового города Милета, расположенного в Малой Азии на берегу Эгейского Моря.
3. Какие открытия совершили математики, изучая треугольник?
Рене Декарт (1596-1650)
В «Геометрии» Декарт заложил основы аналитической геометрии. Геометрия» Декарта оказала огромное влияние на развитие математики, и почти 150 лет алгебра и аналитическая геометрия развивались преимущественно в направлениях, указанных Декартом .
ПОНСЕЛЕ (Poncelet) Жан Виктор (1788-1867) , французский математик и инженер. Заложил основы проективной геометрии.
В 1822 году французский математик и механик Жан Виктор Понселе опубликовал «Трактат о проективных свойствах фигур».
3. Какие открытия совершили математики, изучая треугольник?
Эйлер (Леонгард, Euler) один из величайших математиков XVIII столетия, родился в 1707 г.
Были открыты новые теоремы о свойствах треугольника: Теоремы Эйлера об окружности.
3. Какие открытия совершили математики, изучая треугольник?
Тригонометрия, как отдельный предмет впервые рассматривается в труде азербайджанского математика и астронома Насиреддина Туей (1201-1274) «Трактат о полном четырехстороннике».
Йоганн МЮЛЛЕР1436-1476
В Европе аналогичное открытие сделал немецкий ученый Иоганн Мюллер (1436-1476) в сочинении «О треугольниках всех видов».
Бернулли Иоганн I (1667-1748)
3. Какие открытия совершили математики, изучая треугольник?
Современные обозначения синуса и косинуса были введены в 1739 году Бернулли.
Понятие синус ввели индийские ученые, рассматривая окружность. В переводе с индийского синус означает “половина тетивы лука.
3. Какие открытия совершили математики, изучая треугольник?
Красивая теорема Наполеона.«Если на сторонах треугольника во внешнюю сторону построить равносторонние треугольники, то их центры будут вершинами равностороннего треугольника»
Наполеон I, — Наполеон Бонапарт (Napolйon Bonaparte) (15.8.1769, Аяччо, Корсика, — 5.5.1821, о. Св. Елены),
3. Какие открытия совершили математики, изучая треугольник?
Эдвард Морли.
Эдвард Морли.
Морли (Morley) Эдвард Уильямс (29.I.1839–1923)
Открытие в геометрии треугольника есть и в нашем веке. В 1904 году американский математик Ф.Морли вывел теорему о трисектрисах угла, теоремы о замечательных точках треугольника
4. Какие выводы можно сделать?
Треугольник — простейшая плоская фигура: три вершины и три стороны. Но с древнейших времен и до наших дней математики занимаются изучением треугольника. За это время было сделано много важных открытий и даже создана новая наука – тригонометрия…Можно сделать вывод: треугольник важнейшая и неисчерпаемая фигура в геометрии.
Видео:Всё про прямоугольный треугольник за 15 минут | Осторожно, спойлер! | Борис Трушин !Скачать
Треугольник: Историческая справка
Треугольник : Историческая справка .
Итак, треугольник одна из древних геометрических фигур.
Треугольник – простейшая плоская фигура. Три вершины, три стороны. Но изучение треугольника породило целую науку – тригонометрию.
Первые упоминания о треугольнике и его свойствах ученые находят в египетских папирусах, которым более 4000 лет. В Древней Греции изучение свойств треугольника достигает высокого уровня – это теорема Пифагора и формула Герона, которым более 2000 лет.
В XV – XVI веках появилось огромное количество исследований свойств треугольника. Это большой раздел планиметрии, получивший название “Новая геометрия треугольника”. Большой вклад в изучение свойств треугольника внес русский ученый . Его труд «Новое начало геометрии» получил применение в физике, кибернетике и математике.
Без преувеличения можно сказать, что это самая известная теорема геометрии, ибо о ней знает подавляющее большинство населения планеты, хотя доказать ее способна лишь очень незначительная его часть В чем же причина такой популярности «пифагоровых штанов»? Знатоки утверждают, что причин здесь три: а) простота, б) красота, в) широчайшая применимость.
Из дошедших до нас жизнеописаний Пифагора (примерно 580-500 до н. э.) мы знаем, что он около 20 лет провел в Египте, где имел возможность познакомиться с математикой египтян. В Египте уже с XXIII века до н. э. был известен прямоугольный треугольник со сторонами 3, 4, 5, вошедший в геометрию под названием «египетского». При этом древние египтяне знали и использовали в своей практической деятельности (строительство, землемерие) только одно свойство этого самого прекрасного, по мнению Плутарха, из всех треугольников — наличие прямого угла, неизменно образуемого, если соотношение длин сторон в нем составляет 3:4:5. Другое его свойство — равенство квадрата гипотенузы сумме квадратов катетов (теорема Пифагора), а также существование других прямоугольных треугольников с целочисленными сторонами, например 5, 12, 13; 15, 8, 17; 7, 24, 25 и т. д., остались неизвестными древним египтянам.
🔍 Видео
ГЕОМЕТРИЯ 7 класс. Медиана прямоугольного треугольника. Свойство. Доказательство для 7 класса.Скачать
КАТЕТЫ И ВЫСОТА В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ЧАСТЬ I #математика #егэ #огэ #Shorts #геометрияСкачать
Геометрия 7 класс (Урок№9 - Треугольник.)Скачать
Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать
Виды треугольниковСкачать
Подобие прямоугольных треугольников и его применениеСкачать
Решение прямоугольных треугольниковСкачать
Свойство медианы в прямоугольном треугольнике. 8 класс.Скачать
Высота в прямоугольном треугольнике. 8 класс.Скачать
Шикарный прямоугольный треугольник от зрителяСкачать
ВСЕ ВИДЫ ТРЕУГОЛЬНИКОВ😉 #егэ #огэ #математика #профильныйегэ #shorts #геометрия #образованиеСкачать
Что такое египетский треугольник?Скачать
Разница между прямым и прямоугольным параллелепипедом #математикапрофиль #геометрияегэСкачать
ПРОБЛЕМНЫЕ ЗАДАЧИ #1 ЕГЭ 2024 с Высотой в Прямоугольном ТреугольникеСкачать
Геометрия 7 класс : Признаки равенства прямоугольных треугольниковСкачать
Виды треугольников: остроугольный, прямоугольный ,тупоугольный. Как начертить треугольникСкачать
Апокриф разоблачает Пифагора и его прямоугольный треугольникСкачать