Данная тема представляет определенный интерес, поскольку её истоки относятся к древности:с давних пор люди пытались решать задачи, связанные с кругом – измерять длину окружности, находить площадь круга.
Любой школьник сегодня должен уметь находить длину окружности и площадь круга, первый опыт вычислений происходит в 6 классе. Но, к сожалению, эти знания остаются для многих формальными, и уже через годмало кто помнит не только то, что отношение длины окружности к её диаметру одно и то число, но даже с трудом вспоминают численное значение числа π, равное 3,14.
В ходе работы над проектом появляется возможность не только усвоить формулы для нахождения длины окружности и площади круга, нои приподнять завесу богатейшей истории числа π, которым человечество пользуется уже много веков.
Актуальность проекта заключается в том, что появляется возможность не только усвоить формулы для нахождения длины окружности и площади круга, но и создать информационный продукт в виде буклета, который будет содержать не только основные понятия и формулы по теме «Длина окружности и площадь круга», но и интересные факты и исторические сведения.
Гипотеза: Длина окружности, её радиус и площадь связаны между собой посредством формул.
Цель работы: Исследование числа π и выявление его роли в окружающей среде . Задачи работы: 1. Познакомиться подробнее с числом π. 2. Провести практическую работу нахождения числа π. 3. Найти занимательные факты и правила для запоминания числа π.
4.Изучить формулу площади круга.
5.Научится создавать буклеты с помощью текстового процессора MicrosoftWord.Предмет исследования: окружность.
Объект исследования: отношение длины окружности к диаметру.
Методы исследования: эксперимент, наблюдение, анализ.
Ожидаемые результаты: Некоторые данные и формулы достаточно трудно запоминаются, но с помощью открытия интересных фактов о числах или понятиях, можно лучше запомнить формулы, правила. Создание буклета с помощью MicrosoftOffice.
Глава 1. Теоретическая часть
У круга есть одна подруга.
Известна всем её наружность.
Она идёт по краю круга
1.1. Понятие окружности
Окружность – это замкнутая кривая линия, все точки которой находятся на равном расстоянии от данной точки плоскости, называемой центром окружности.
Точка О – центр окружности. R –радиус окружности (это отрезок, соединяющий центр окружности с любой ее точкой). По-латыни radius – это спица колеса.
1.2. Длина окружности.
Если разрезать окружность в какой-либо точке и распрямить её, то получим отрезок, длина которого и есть длина окружности.
Отношение длины окружности к её диаметру есть одно и то же число для всех окружностей. Установлено, что какой бы ни была окружность, отношение ее длины к диаметру является постоянным числом. Это число принято обозначать буквой π.
Более точное его значение 3,1415926535897932… [1, стр.189]
Обозначим длину окружности буквой С, а ее диаметр буквой d , то, тогда формулы для вычисления длины окружности С = πd.
Если известен радиус окружности, то формула длины окружности будет выглядеть следующим образомC = 2πr.
1.3. Круг. Площадь круга
Круг – это часть плоскости, ограниченная окружностью.
Площадь круга вычисляется по формуле: S=R2 [2, «Окружность. Круг»]
1.4. Исторические сведения
Ещё в древности пытались решать задачи связанные с кругом. Измерение длины окружности имеет чисто «практическое» решение: можно уложить вдоль окружности нить, а потом развернут её и приложить к линейке ил же отметить на окружности точку и «прокатить» её вдоль линейки (можно, наоборот, «обкатить» линейкой окружность). Так или иначе измерения показывали, что отношение длины окружности к её диаметру одно и то же для всех окружностей. Древние египтяне считали, что длиннее диаметра в 3,16 раза, а римляне – в 3,12 раза. Однако древнегреческих математиков такой опытный подход к определению длины окружности не удовлетворял. К тому же такой подход не позволял определить площадь круга. Выход был найден, впервые известным учёным Архимед предложил первый математический метод вычисления числа π, с помощью расчета вписанных в круг многоугольников.
Это позволяло вычислять значение π не практически – ниткой и линейкой, а математически, что обеспечивало гораздо большую точность. [3, стр. 65-72]
Известный ученый Архимед нашел значение π =, что дает величину 3.1428. В Древней Греции вскоре после Архимеда было получено более точное приближение к числу π = .
В V веке н.э. китайским математиком Цзу Чунчжи было найдено более точное значение π =3,1416927… .
Спустя полтора столетия в Европе нашли число π только с 9 правильными десятичными знаками, сделав 16 удвоений числа сторон многоугольников, но при этом Ф.Виету принадлежит первенство в открывшейся возможности отыскания π. Это открытие имело огромное значение, так как позволило вычислять число π с какой угодно точностью. [4]
Вначале XVII в. Голландский математик из Кельна (Кейлен) Лудольф ван Цейлен затратил 10 лет на вычисление числа Пи и нашел 32 правильных знака после запятой. Изложив свои результаты в сочинении «Об окружности», Лудольф закончил его словами: « У кого есть охота, пусть идёт дальше». С тех пор (1615г.) значение числа π с 32 десятичными знаками получило название числа Лудольфа. [5]
В настоящее время число Пи вычислено с точностью до 10 триллионов знаков после запятой.
Первый миллион знаков после запятой в числе Пи состоит из: 99959 нулей, 99758 единиц, 100026 двоек, 100229 троек, 100230 четвёрок, 100359 пятёрок, 99548 шестёрок, 99800 семёрок, 99985 восьмёрок и 100106 девяток.
Если рассчитать длину экватора с точностью до 1 см – предполагая, что мы знаем длину его диаметра вполне точно – нам достаточно было бы взять π всего с 9 цифрами после запятой. А взяв вдвое больше цифр (18) , мы могли бы вычислить длину окружности, имеющей радиусом расстояние от Земли до Солнца, с погрешностью не свыше 0,0003 мм (волос в 100 раз толще этой возможной ошибки!)
В штате Иллинойс (США) официально принят закон о том, чтобы чисто Пи считать равным 4! [6]
Многие математики утверждают, что правильным будет такая формулировка: «круг – фигура с бесконечным количеством углов». Здорово, правда?!
Есть такая поговорка английского математика Моргана: «Число π лезет в дверь, в окно и через крышу».
14 марта объявлено Всемирным днем числа π. [7]
Вывод: Число π захватывает умы гениев всего мира.
(приложение 1. Портрет числа π)
Глава 2. Исследовательская часть2.1. Эксперимент 1. Нахождение длины окружности с помощью нити
Практическая работа состояла в том, чтобы найти отношение длины окружности к её диаметру.
Берём шесть круглых предметов, в частности вазу, несколько стаканов и чашек разных размеров.
С помощью нити измеряем длину окружности.
Поставив предмет на лист бумаги, обводим его карандашом, вырезаем бумажный круг, сгибаем пополам и линейкой измеряем длины диаметров.(приложение 2)
Составим таблицу с измеренными данными, последний столбец таблицы вычислительного характера: вычислим с помощью калькулятора отношение длины окружности (столбец 2) к диаметру (столбец 3) .
Видео:Длина окружности. Площадь круга. 6 класс.Скачать
Вывод площади круга и числа pi (пи) и опровержение формулы Бухмиллера
Свобода слова принята во Всеобщей декларации прав человека ООН, Статья 19: Каждый человек имеет право на свободу убеждений и на свободное выражение их; это право включает свободу беспрепятственно придерживаться своих убеждений и свободу искать, получать и распространять информацию и идеи любыми средствами и независимо от государственных границ.
(образование: Московский Государственный Университет им. М.В.Ломоносова, химический факультет)
ПРИМЕЧАНИЕ. Некоторые браузеры не могут отображать греческие буквы (шрифт Symbol) и некоторые иные математические символы и показывают пи ( p ) в виде p. Поэтому для удобства пользователей всех браузеров здесь число пи (pi в LaTeX) обозначается как pi, а знак «приближенно равно» (approx в LaTeX) как
Приближенное значение числа pi (пи) вычислил еще великий древнегреческий ученый Архимед (287 — 212 гг. до н. э.) в своей работе «Об измерении круга». Однако П.Бухмиллер в 2011 году заявил, что площадь круга якобы равна полусумме площадей вписанного и описанного квадратов, т.е. якобы равна 3r 2 , а не pi r 2 . ( http://redstar-43.ru )
Опровергнуть заявление Бухмиллера на опыте элементарно просто. Берете любой цилидрический предмет, например коробку для чистых компакт-дисков, измеряете ее диаметр — около 12,5 см. А затем ниткой или гибкой линейкой измеряете длину ее окружности. Она равна около 39,3 см. Значит, отношение длины окружности к диаметру (определение числа pi) равно:
а не 3. Проведите такой простой опыт самостоятельно. Ведь опыт подтверждает математическую истину, открытую еще Архимедом и опровергает заблуждение Бухмиллера.
Видео:Длина окружности. Площадь круга - математика 6 классСкачать
Строгий математический вывод числа пи pi
Но математика — наука точная, поэтому ниже представлено, как именно великий Архимед вывел число pi.
Этот текст написан для школьников, интересующихся математикой, лично для Бухмиллера, а также для тех, кто поверил Бухмиллеру.
Итак, Бухмиллер в XXI веке построил вокруг круга описанный и вписанный квадраты и заявил, что, если площадь описанного квадрата равна 4r 2 , а площадь вписаного квадрата равна 2r 2 , то, мол, площадь круга равна 3r 2 . Причем, Бухмиллер даже не попытался доказать это заявление о полусумме.
Архимед же в III веке ДО нашей эры считал умнее. Он построил вокруг круга не только квадраты, но и вписанные и описанные правильные 6-угольники, 8-угольники и так далее вплоть до 96-угольников. И считал их площади. Архимед понимал, что площадь круга S меньше площади описанного правильного многоугольника S O , но больше площади вписанного правильного многоугольника S B :
Так Архимед вывел число pi
Для решения задачи в общем случае рассчитаем площади правильных n-угольников — вписанного в окружность и описанного вокруг нее.
Разделим правильный описанный n-угольник на n равносторонних треугольников и n/2 прямоугольных треугольников с углом a у центра круга (см. рисунок). И вычислим их площади, понимая, что они равны сумме площадей соответствующих треугольников, на которые они разбиты. Очевидно, что:
угол a = 360 o /2n
Площадь треугольника равна bh/2, где b — основание, h — высота. В данном случае для треугольника из описанного многоугольника h = r и b/2 = r tg a и его площадь равна r 2 tg a. А для вписанного — h = r cos a и b/2 = r sin a и его площадь равна r 2 sin a cos a. Площадь многоугольника в n раз больше площади треугольника. Тогда площадь правильного описанного n-угольника равна:
S O = nr 2 tg a = nr 2 tg (360 o /2n)
А площадь правильного вписанного n-угольника равна:
S В = nr 2 sin a cos a
В школьном курсе тригонометрии выводится формула:
sin2a = 2 sin a cos a
Поэтому предыдущее выражение примет вид:
S В = 0,5 nr 2 sin2a = 0,5 nr 2 sin (360 o /n)
А теперь, используя научный калькулятор, подставим n= 100, т.е. площади правильных описанного и вписанного 100-угольников равны:
S O = nr 2 tg (360 o /2n) = 100 r 2 tg (360 o /200) = 100 r 2 tg 1,8 o
S В = 0,5 nr 2 sin (360 o /n) = 50 r 2 sin (360 o /100) = 50 r 2 sin 3,6 o
Следовательно, площадь круга находится в следующих пределах:
3,1395 r 2 3,1426 r 2
и приближенно равна 3,14 r 2 , а число pi
= 3,14. Что и требовалось доказать.
А теперь вычислим более точные значения числа pi. Подставим n= 1000:
S O = 1000 r 2 tg (360 o /2000) = 1000 r 2 tg 0,18 o
S В = 500 r 2 sin (360 o /1000) = 500 r 2 sin 0,36 o
Следовательно, площадь круга находится в следующих пределах:
3,141572 r 2 3,141603 r 2
А теперь, подставим n = 1000 000 = 10 6 для площадей миллион-угольников:
S O = 10 6 r 2 tg 0,00018 o
= 3,1415926536 r 2
S В = 5*10 5 r 2 sin 0,00036 o
= 3,14159265357 r 2
Следовательно, площадь круга находится в следующих пределах:
3,14159265357 r 2 3,1415926536 r 2
= 3,1415926536. Что и требовалось доказать. Как видите, ни о какой полусумме квадратов и речи не идет. И Архимед это понимал.
В качестве домашнего задания вычислите число pi более точно по площадям миллиард-угольников.
Видео:Математика 6 класс (Урок№76 - Длина окружности. Площадь круга.)Скачать
Кто открыл площадь окружности
Напомним: число π («пи») определяется как отношение длины окружности к ее диаметру . Это кратко выражается формулой для вычисления длины окружности , или . Другая известная формула, в которой встречается π, – формула площади круга , или . В принципе π можно было бы определить как отношение площади круга к квадрату радиуса. За этими формулами скрываются три нетривиальных математических факта:
1)
длина окружности пропорциональна ее диаметру;
2)
площадь круга пропорциональная квадрату радиуса;
3)
коэффициенты пропорциональности в двух последних случаях совпадают.
Десятичная дробь, выражающая число π, бесконечна, хотя можно вычислить различные конечные дроби – десятичные приближения для π. Наиболее популярное приближение – с точностью до сотых: π ≈ 3,14.
Самое простое приближение для π полагает его равным 3 (несмотря на грубость этого приближения, его ошибка менее 5 %). Такое приближение использовалось, например, в Древнем Вавилоне в III–II вв. до н. э.: длину окружности находили по правилу, которое в современных обозначениях можно записать , площадь круга находили по правилу . Значение π = 3 используется и древними иудеями: библейский автор упоминает, что при строительстве храма при царе Соломоне мастер Хирам из Тира в числе других храмовых украшений «сделал литое из меди море, – от края его до края его десять локтей, – совсем круглое. и шнурок в тридцать локтей обнимал его кругом» (3 Цар 7, 23). Позже для более точных вычислений использовалось геометрическое приближение: от площади квадрата, описанного вокруг круга, отнимались площади треугольников с длиной стороны, равной трети стороны квадрата, получалось довольно точное значение
В Древнем Египте для вычисления площади круга использовалось правило , что соответствует значению . Ошибка при этом составляет менее 1 %. Как получали это правило, неизвестно.
У древнегреческих математиков с их превалирующим интересом к геометрическим построениям и доказательствам, а не к вычислениям, вопрос о численном значении π был не столь важным, нежели проблема квадратуры круга, т. е. построения квадрата, равновеликого данному кругу, если удастся, то с помощью циркуля и линейки, а в противном случае – с помощью каких-то других инструментов. Задача о квадратуре круга имела широкую известность не только среди математиков: например, о ней говорится в комедии Аристофана «Птицы».
Изучая задачу о квадратуре круга, Гиппократ Хиосский (V в. до н. э.) нашел некоторые случаи, когда с помощью циркуля и линейки можно найти квадратуру определенных частей круга, ограниченных кривыми линиями (а именно, двумя окружностями). Такие части называются луночками . Самый простой случай – это луночка между окружностью, описанной около равнобедренного прямоугольного треугольника, и другой окружностью, диаметром которой служит катет этого треугольника.
Нетрудно видеть, что, по теореме Пифагора, , а потому площадь круга, построенного на , равна двум площадям круга, построенного на , а значит, площадь полукруга, построенного на , равна площади четверти круга, построенного на . Поэтому, вырезав из этих фигур их общую часть – сегмент – получим равновеликие фигуры: таким образом, площадь луночки равна площади прямоугольного треугольника .
Древнейшие известные попытки собственно квадратуры круга принадлежат Антифонту и Бризону (V в. до н. э.). Антифонт последовательно вписывал в круг правильные многоугольники, каждый раз удваивая количество сторон, и полагал, что в конце концов многоугольник совпадет с окружностью. Бризон строил два квадрата – вписанный в окружность и описанный вокруг нее – и считал, что площадь квадрата, лежащего между ними, равна площади круга. Разумеется, в буквальном понимании и Антифонт, и Бризон заблуждались. Однако их идеи оказались весьма плодотворными: действительно, вписывая в окружность правильные многоугольники со все большим числом сторон, можно сколь угодно близко подойти к площади круга и длине окружности; смысл есть и в том, чтобы рассматривать не только вписанные, но и описанные многоугольники: при этом площадь круга будет лежать между площадями вписанных и описанных многоугольников, а длина окружности – между периметрами тех и других.
В дальнейшем именно вписанные и описанные правильные многоугольники стали активно применяться как для теоретических исследований, так и для конкретного вычисления числа π. Именно с помощью таких многоугольников было сформулировано строгое доказательство того, что площади кругов относятся как квадраты их диаметров, найденное, по-видимому, Евдоксом и приведенное в «Началах» Евклида. Архимед доказал, что площадь круга равна половине произведения длины окружности на ее радиус. Кроме того, с помощью вычисленных им периметров вписанных и описанных правильных многоугольников (от 6-угольника до 96-угольника) Архимед нашел, что:
или, в десятичных дробях, (подлинное значение ).
Таким образом, он не только нашел приближенные значения π, но и оценил точность этих приближений. Уже найденная Архимедом верхняя оценка, равная 22/7, дает приближение π с точностью 0,04 %. Эту дробь часто называют «архимедовым числом». Клавдий Птолемей, использовав правильный 720-угольник, нашел, что , что составляет приблизительно 3,14167 (ошибка меньше 0,003 %).
Как и для удвоения куба, и для трисекции угла, для квадратуры круга были изобретены методы, использующие свойства различных кривых. Общим свойством этих кривых было их образование путем сочетания двух типов движений – равномерного поступательного (вдоль некоторой прямой) и равномерного вращательного (вокруг некоторой точки или оси). При этом имеет место пропорциональность между углом, на который повернулся вращающийся элемент, и длиной отрезка, пройденной при поступательном движении.
Прежде всего, это была уже упомянутая квадратриса (см. урок, посвященный трисекции угла), которую впервые использовал для квадратуры круга Динострат. Оказывается, если – точка, в которой квадратриса пересекает отрезок , то четверть длины окружности, проходящей через точку , с центром в точке , равна длине отрезка .
Из этого следует, что длина дуги равна , а площадь круга радиуса равна площади прямоугольника со сторонами и ; такой прямоугольник легко построить с помощью циркуля и линейки, если известны отрезки и . Построив прямоугольник, можно построить и равновеликий ему квадрат.
Кроме квадратрисы, для квадратуры круга использовались связанные с ней винтовая линия и спираль Архимеда. Винтовая линия получается при движении точки по поверхности цилиндра, складывающемся из двух движений: во-первых, движения с постоянной скоростью вдоль оси цилиндра, а во-вторых, равномерного вращения по окружности основания цилиндра.
Спираль Архимеда – эта кривая, которую заметает точка , равномерно движущаяся вдоль радиуса , который, в свою очередь, равномерно вращается вокруг точки .
Задача, похожая на квадратуру круга, фигурировала и в Древней Индии. В уже упоминавшейся (см. урок по теореме Пифагора) книге «Шулва-сутра», излагавшей правила строительства алтарей, построение круга, равновеликого данному квадрату , производится так. Вокруг квадрата описывается окружность; пусть перпендикуляр к отрезку , проходящий через центр окружности , пересекает прямую и окружность в точках и , а точка делит отрезок в отношении . Тогда – радиус круга, равновеликого данному квадрату. Если – сторона квадрата, то длина полученного радиуса описанный способ соответствует приближенному значению π
В более поздние времена в Индии использовались приближения для π, равные (т. е. ≈ 3,162 – ошибка менее 1 %); 22/7 и даже 3,1416. Интересно наглядное доказательство предложения «площадь круга равна площади прямоугольника, стороны которого равны полуокружности и радиусу» у математика Ганеши (XVI в.). Как и в доказательстве теоремы Пифагора у Бхаскары, здесь все доказательство состоит из чертежа и слова «смотри». Ганеша делит круг на 12 секторов, а затем разворачивает каждый полукруг, состоящий из 6 секторов, в пилообразную фигуру, основание которой равно полуокружности, а высота – радиусу. Прямоугольник, о котором говорится в условии, получится при вставлении зубьев одной «пилы» в зазоры между зубьями другой. По-видимому, читатель должен был представлять себе, что круг разделен не на 12, а на столь большое число секторов, что эти секторы неотличимы от треугольников, составляющих «пилы».
Значение по-видимому, впервые появилось у китайского астронома и философа Чжан Хена (нач. II в. н. э.); вероятно, из Китая оно перешло к индийцам (Брахмагупта, VII в.) и арабам (ал-Хорезми, IX в.); впрочем, метод получения этого значения нам неизвестен. Лю Хуэй (III–IV вв.) с помощью рассмотрения вписанных и описанных многоугольников (в том числе с 3072 вершинами) пришел к приближению , а Цзу Чун-чжи (V в.) доказал, что
Самаркандский математик ал-Каши в «Трактате об окружности» (1424 г.) поставил себе задачу выразить окружность через диаметр с такой точностью, чтобы погрешность в длине окружности, равной 600 000 диаметров Земли, не превосходила толщины волоса. Рассмотрев правильные многоугольники вплоть до фигуры с 805 306 368 (3 ∙ 2 28 ) вершинами, ал-Каши нашел 16 верных знаков (после запятой) числа π, а именно, приближение (в реальности 17-й знак после запятой – 3 или 4, потому что 18-й – 8). Европейские математики достигли такой точности и превзошли ее лишь в конце XVI в.: в 1597 г. голландец вычислил 17-й знак, для чего применил многоугольник с 1 073 741 824 (2 30 ) вершинами.
В начале XVII в. профессор математических и военных наук Лейденского университета Лудольф ван Цейлен довел количество точных знаков (после запятой) числа π до 35. Современники называли найденное им приближение π «числом Лудольфа». Эти знаки он завещал выбить на надгробном камне. Интересно, что, поскольку в то время привычная нам позиционная запись десятичных дробей еще не вполне прижилась, на надгробии было написано не 3,14159265358979323846264338327960288, а
Еще два голландца XVII в. – В. Снеллиус и Х. Гюйгенс – с помощью некоторых тонких геометрических рассуждений смогли достичь большей точности при меньшем числе сторон рассматриваемых многоугольников. Снеллиус воспроизвел результат Архимеда – три верных знака после запятой – рассматривая не более чем а с помощью получил целых 7 верных знаков. Гюйгенс, доказав некоторые геометрические теоремы, смог вычислить 10 верных знаков с помощью 60-угольника.
Далее метод вписанных и описанных многоугольников уступил место новым методам, разработанным с помощью математического анализа – использованию бесконечных сумм, которые дают приближенные значения числа π нужной точности, если оставить в них достаточно большое, но лишь конечное число членов. В результате число верных знаков быстро возросло: вычислители подбирали формулы поудобнее и соревновались друг с другом в том, кто больше получит этих знаков.
ГОД
ВЫЧИСЛИТЕЛЬ
ЧИСЛО ТОЧНЫХ ЗНАКОВ
1699
А. Шарп
71
1706
Дж. Мечин
100
1717
Т. де Ланьи
112
1794
Г. Вега
136
1844
И. М. З. Дазе
200
1847
Т. Клаузен
248
1853
У. Резерфорд
440
Рекорд для XIX в. поставил Уильям Шенкс, нашедший в результате 707 знаков после запятой; в 1-ой половине XX в. эти знаки часто воспроизводили в популярной литературе, а архитекторы даже украшали ими свои сооружения (Дом занимательной науки в Ленинграде, ныне Санкт-Петербург, 1934; Дворец открытий в Париже, 1937). В 1945 г. результаты Шенкса были проверены на компьютере, и оказалось, что из его знаков верны только первые 527. Компьютеры позволили существенно увеличить количество точных цифр в десятичном разложении π, причем, если раньше вычислители тратили на них многие годы, то теперь компьютеры справлялись с этим менее чем за день работы. Этому также способствовало применение более эффективных алгоритмов на основание новых математических формул.
ГОД
ВЫЧИСЛИТЕЛЬ
КОМПЬЮТЕР
ЧИСЛО ТОЧНЫХ ЗНАКОВ
1949
Дж. фон Нейман
ENIAC
2 037
1958
Ф. Женюи
IBM 704
10 000
1961
Д. Шенкс, Дж. Ренч
IBM 7090
100 625
1973
Ж. Гийу, М. Буйе
CDC-7600
1 000 000
1976
Д. Х. Бейли
Cray-2
29 360 000
1987
Я. Канада
NEC SX-2
134 217 000
1989
Д. и Г. Чудновски
Cray-2, IBM 3090
1 011 196 691
1999
Я. Канада, Д. Такахаси
HITACHI SR 8000
206 158 430 000
Само обозначение π для отношения окружности к диаметру было введено в 1706 году У. Джонсом.
Что касается принципиальных математических результатов относительно π, то здесь следует упомянуть, во-первых, доказательство иррациональности этого числа, проведенное в 1766 г. И. Г. Ламбертом (некоторый пробел в доказательстве Ламберта был восполнен в 1800 г. А. М. Лежандром), а во-вторых, доказательство трансцендентности π, осуществленное в 1882 г. К. Ф. Линдеманом. Трансцендентность некоторого числа означает, что оно не может быть корнем никакого уравнения вида с целыми коэффициентами . Из этого следует, что оно не может быть представлено в виде конечной комбинации целых чисел, арифметических действий и знака извлечения корня. Поэтому и квадратура круга не может быть решена с помощью циркуля и линейки, которые позволяют строить лишь отрезки, выражаемые через арифметические действия и квадратные корни.