Сумму из трех чисел ( круг, квадрат, треугольник — схема примера) можно записать шестью разными способами. Нарисуй в тетради все возможные суммы.
1).круг+квадрат+треугольник
2). круг+?+?
3). квадрат+?+?
4). ?+?+?
5). треугольник+?+?
6). ?+?+?
*Как ты думаешь,какие из этих сумм имеют одинаковые значения?
*Выбери любые три числа и проверь свое предположение: подставь числа в схемы и вычисли суммы
- Почему нынче в школе первый класс вроде института
- Метки
- Сложные математические задачи
- Круги, треугольники и квадраты
- Катя и 4 открытки
- Треугольник вписанный в окружность
- Определение
- Формулы
- Радиус вписанной окружности в треугольник
- Радиус описанной окружности около треугольника
- Площадь треугольника
- Периметр треугольника
- Сторона треугольника
- Средняя линия треугольника
- Высота треугольника
- Свойства
- Доказательство
- 🎥 Видео
Видео:Задача, которую боятсяСкачать

Почему нынче в школе первый класс вроде института
Метки
Эти сложные математические задачи мы взяли из обычных учебников для начальной школы. Родители возмущены и недоумевают: «Что за безобразие, как их вообще решить без иксов и систем уравнений?»
Похоже, Алла Борисовна знала об этой проблеме еще в 1980 году. Нынче в школе первый класс — действительно что-то вроде института. Но, в отличие от эмоционального кандидата наук из «Песенки первоклассника», мы не станем над задачами плакать. Попробуем найти для них простые решения.
Видео:Квадратура круга: математически невозможная задача, оказавшаяся решаемойСкачать

Сложные математические задачи
Круги, треугольники и квадраты
Задачка для первого класса со звездочкой (повышенной сложности). Требуется найти, чему равна сумма круга, треугольника и квадрата.
У взрослого человека, знакомого с алгеброй, первое побуждение — составить систему из трех уравнений. Если круг — это х, квадрат — y, а треугольник — z, получаем:
Отсюда 30 — 2х = 24; 2х = 6; х = 3. Круг (х) равен 3, значит квадрат (у) равен 7, а треугольник (z) — 17. Сумма круга, треугольника и квадрата дает нам 27 кг.
Но системы уравнений начинают изучать только на уроках алгебры в 7-м классе. Может есть более простое решение? Некоторые родители в комментариях предлагают решать задачу методом подбора значений. Но, как по мне, это больше похоже на гадание, чем на решение.
Посмотрим на наши фигуры еще раз. На первых трех рисунках у нас два квадрата, два круга и два треугольника. Всё это в сумме дает 54. Значит половина — квадрат круг и треугольник равна 27 (54 : 2 = 27).
Или по-другому: круг плюс квадрат 10, а треугольник плюс квадрат 24, значит треугольник на 14 килограмм тяжелее круга. То есть, если круг принять за х, то треугольник равен х + 14. Тогда х + х + 14 = 20; х = 3, и так далее.
Катя и 4 открытки
Эту задачку я обнаружил в заданиях, которые моему сыну-третьекласснику предстояло выполнять на летних каникулах. Это, конечно, не бином Ньютона, но как обойтись без уравнений и только методами начальной школы? Да и много ли детей смогут решить такое без папы, который «силен в математике»?
Без переменных опять не получается. Положим, что первая открытка стоила a рублей, вторая — b, третья — с, четвертая — d. Тогда b+c+d=42; a+c+d=40; a+b+d=38; a+b+c=36. Что теперь делать с этим богатством?
Ясно, что нужно что-то складывать, но не очень понятно, что с чем и на каком основании. Допустим, мы сложили все левые части наших выражений. Получается 3а+3b+3c+3d или 3(a+d+c+d). Можно заметить, что это утроенная сумма стоимости всех открыток. Отсюда находим ее значение (42+40+38+36):3=52 рубля.
Теперь уже дело техники. 52-42=10 — первая открытка; 52-40=12 — вторая открытка; 52-38=14 — третья открытка; 52-36=16 — четвертая открытка. Отметим, что в комментариях умные взрослые с двумя высшими предлагают «нарисовать простой линейный график», «решать методом ненаучного тыка», «чаще подходить к домашке, задача, мол, и яйца выеденного не стоит».
А как ты считаешь, такие задачи помогают ученикам младших классов развивать логику или напрочь отбивают желание учиться? Взрослый-то их решит легко, но сможет ли объяснить ребенку? Ребенок раз не решит, два не решит и сделает вывод, что никогда не сможет понять эту ужасную математику. А мама вздохнет и скажет: «Что поделаешь, мой ребенок — гуманитарий, ему не дано…»
Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Треугольник вписанный в окружность
Видео:Запомни: все формулы для площади треугольникаСкачать

Определение
Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.
На рисунке 1 изображена окружность, описанная около 
треугольника и окружность, вписанная в треугольник.
ВD = FC = AE — диаметры описанной около треугольника окружности.
O — центр вписанной в треугольник окружности.
 
Видео:Площадь треугольника. Как найти площадь треугольника?Скачать

Формулы
Радиус вписанной окружности в треугольник
r — радиус вписанной окружности.
- Радиус вписанной окружности в треугольник, 
 если известна площадь и все стороны:
 Радиус вписанной окружности в треугольник, 
если известны площадь и периметр:
 Радиус вписанной окружности в треугольник, 
если известны полупериметр и все стороны: 
Радиус описанной окружности около треугольника
R — радиус описанной окружности.
- Радиус описанной окружности около треугольника, 
 если известна одна из сторон и синус противолежащего стороне угла:
 Радиус описанной окружности около треугольника, 
если известны все стороны и площадь: 
 Радиус описанной окружности около треугольника, 
если известны все стороны и полупериметр:
Площадь треугольника
S — площадь треугольника.
- Площадь треугольника вписанного в окружность, 
 если известен полупериметр и радиус вписанной окружности:
 Площадь треугольника вписанного в окружность, 
если известен полупериметр:
 Площадь треугольника вписанного в окружность, 
если известен высота и основание:
 Площадь треугольника вписанного в окружность, 
если известна сторона и два прилежащих к ней угла:
 Площадь треугольника вписанного в окружность, 
если известны две стороны и синус угла между ними:
[ S = fracab cdot sin angle C ]
Периметр треугольника
P — периметр треугольника.
- Периметр треугольника вписанного в окружность, 
 если известны все стороны:
 Периметр треугольника вписанного в окружность, 
если известна площадь и радиус вписанной окружности: 
 Периметр треугольника вписанного в окружность, 
если известны две стороны и угол между ними:
Сторона треугольника
a — сторона треугольника.
- Сторона треугольника вписанного в окружность, 
 если известны две стороны и косинус угла между ними:
 Сторона треугольника вписанного в 
окружность, если известна сторона и два угла: 
Средняя линия треугольника
l — средняя линия треугольника.
- Средняя линия треугольника вписанного 
 в окружность, если известно основание:
 Средняя линия треугольника вписанного в окружность, 
если известныдве стороны, ни одна из них не является 
основанием, и косинус угламежду ними: 
Высота треугольника
h — высота треугольника.
- Высота треугольника вписанного в окружность, 
 если известна площадь и основание:
 Высота треугольника вписанного в окружность, 
если известен сторона и синус угла прилежащего 
к этой стороне, и находящегося напротив высоты:
[ h = b cdot sin alpha ]
 Высота треугольника вписанного в окружность, 
если известен радиус описанной окружности и 
две стороны, ни одна из которых не является основанием:
Видео:Построение равностронего треугольника.Скачать

Свойства
- Центр вписанной в треугольник окружности 
 находится на пересечении биссектрис.
- В треугольник, вписанный в окружность, 
 можно вписать окружность, причем только одну.
- Для треугольника, вписанного в окружность, 
 справедлива Теорема Синусов, Теорема Косинусов
 и Теорема Пифагора.
- Центр описанной около треугольника окружности 
 находится на пересечении серединных перпендикуляров.
- Все вершины треугольника, вписанного 
 в окружность, лежат на окружности.
- Сумма всех углов треугольника — 180 градусов.
- Площадь треугольника вокруг которого описана окружность, и 
 треугольника, в который вписана окружность, можно найти по
 формуле Герона.
Видео:Три типа формообразования. Основа Сакральной Геометрии. Круг, Треугольник и Квадрат.Скачать

Доказательство
Около любого треугольника, можно
описать окружность притом только одну.
 
окружность и треугольник, 
которые изображены на рисунке 2.
окружность описана 
около треугольника.
- Проведем серединные 
 перпендикуляры — HO, FO, EO.
- O — точка пересечения серединных 
 перпендикуляров равноудалена от
 всех вершин треугольника.
- Центр окружности — точка пересечения 
 серединных перпендикуляров — около
 треугольника описана окружность — O,
 от центра окружности к вершинам можно
 провести равные отрезки — радиусы — OB, OA, OC.
окружность описана около треугольника, 
что и требовалось доказать.
Подводя итог, можно сказать, что треугольник,
вписанный в окружность — это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.
🎥 Видео
Всё про углы в окружности. Геометрия | МатематикаСкачать

Мастер-класс "Использование блоков Дьенеша в работе с детьми дошкольного возраста"Скачать

Геометрия Задача найти центр круга /math and magicСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

Треугольник и окружность #shortsСкачать

Учим Геометрические фигуры Круг Квадрат Треугольник Прямоугольник Овал Ромб. Learn Geometric shapesСкачать

Проверь свои знания по математике за 11 классСкачать

Длина окружности. Площадь круга - математика 6 классСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Круг размером с дваСкачать

Думала не справлюсь😂 #shortsСкачать

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать








