Краткое доказательство теоремы площади треугольника

Площадь треугольника — определение и вычисление с примерами решения

Площадь треугольника:

Теорема (о площади треугольника). Площадь треугольника равна половине произведения его стороны на высоту, к ней проведенную.

Доказательство:

Пусть Краткое доказательство теоремы площади треугольника

Краткое доказательство теоремы площади треугольника

Краткое доказательство теоремы площади треугольника

1) Проведем через вершину Краткое доказательство теоремы площади треугольникапрямую, параллельную Краткое доказательство теоремы площади треугольникаа через вершину Краткое доказательство теоремы площади треугольника— прямую, параллельную Краткое доказательство теоремы площади треугольникаПолучим параллелограмм Краткое доказательство теоремы площади треугольника

2) Краткое доказательство теоремы площади треугольника(по трем сторонам). Поэтому

Краткое доказательство теоремы площади треугольникаоткуда Краткое доказательство теоремы площади треугольника

3) Так как Краткое доказательство теоремы площади треугольникато Краткое доказательство теоремы площади треугольника

В общем виде формулу площади Краткое доказательство теоремы площади треугольникатреугольника можно записать так:

Краткое доказательство теоремы площади треугольника

где Краткое доказательство теоремы площади треугольника— сторона треугольника, Краткое доказательство теоремы площади треугольника— высота, проведенная к ней.

Следствие 1. Площадь прямоугольного треугольника равна половине произведения катетов.

Следствие 2. Если сторона одного треугольника равна стороне другого треугольника, то площади таких треугольников относятся как их высоты, проведенные к этим сторонам.

Следствие 3. Если высота одного треугольника равна высоте другого треугольника, то площади этих треугольников относятся как стороны, к которым проведены эти высоты.

Пример:

Докажите, что если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, образующих этот угол.

Краткое доказательство теоремы площади треугольника

Доказательство:

Рассмотрим Краткое доказательство теоремы площади треугольникаи Краткое доказательство теоремы площади треугольникау которых Краткое доказательство теоремы площади треугольникаПроведем высоты Краткое доказательство теоремы площади треугольникаи Краткое доказательство теоремы площади треугольника(рис. 238).

Краткое доказательство теоремы площади треугольника

2) Краткое доказательство теоремы площади треугольника(по острому углу), поэтому Краткое доказательство теоремы площади треугольника

3) Имеем: Краткое доказательство теоремы площади треугольника

Пример:

Найдите площадь равностороннего треугольника, сторона которого равна Краткое доказательство теоремы площади треугольника

Решение:

Пусть Краткое доказательство теоремы площади треугольника— равносторонний со стороной Краткое доказательство теоремы площади треугольникаТогда Краткое доказательство теоремы площади треугольникаВ равностороннем треугольнике Краткое доказательство теоремы площади треугольникагде Краткое доказательство теоремы площади треугольника— медиана. Но Краткое доказательство теоремы площади треугольника(§ 18, задача 4), поэтому Краткое доказательство теоремы площади треугольника

Следовательно, Краткое доказательство теоремы площади треугольника

Ответ. Краткое доказательство теоремы площади треугольника

Пример:

Стороны треугольника равны 8 см, 15 см и ^ 17 см. Найдите высоту треугольника, проведенную к его наибольшей стороне.

Решение:

Так как Краткое доказательство теоремы площади треугольника(т. е. 289 = 289), то по теореме, обратной теореме Пифагора, треугольник является прямоугольным. Прямой угол является противолежащим к стороне, равной 17 см.

Пусть на рис. 239 изображен прямоугольный треугольник, у которого Краткое доказательство теоремы площади треугольникасм -гипотенуза, Краткое доказательство теоремы площади треугольникаи Краткое доказательство теоремы площади треугольникасм — катеты, Краткое доказательство теоремы площади треугольника— высота. Найдем Краткое доказательство теоремы площади треугольника

Краткое доказательство теоремы площади треугольника

Площадь этого треугольника можно найти

по формулам: Краткое доказательство теоремы площади треугольникаили Краткое доказательство теоремы площади треугольника

Тогда Краткое доказательство теоремы площади треугольникато есть Краткое доказательство теоремы площади треугольникаоткуда Краткое доказательство теоремы площади треугольника

Таким образом, имеем: Краткое доказательство теоремы площади треугольника(см).

Ответ. Краткое доказательство теоремы площади треугольникасм.

Видео:Геометрия 9 класс (Урок№14 - Теорема о площади треугольника.)Скачать

Геометрия 9 класс (Урок№14 - Теорема о площади треугольника.)

Теорема (формула площади треугольника)

Площадь треугольника равна половине произведения его стороны на высоту, проведенную к этой стороне:

Краткое доказательство теоремы площади треугольника

где Краткое доказательство теоремы площади треугольника — сторона треугольника, Краткое доказательство теоремы площади треугольника — проведенная к ней высота.

Пусть Краткое доказательство теоремы площади треугольника— высота треугольника Краткое доказательство теоремы площади треугольника(рис. 148). Докажем, что Краткое доказательство теоремы площади треугольника

Краткое доказательство теоремы площади треугольника

Проведем через вершины Краткое доказательство теоремы площади треугольникапрямые, параллельные сторонам треугольника, и обозначим точку их пересечения Краткое доказательство теоремы площади треугольникаТаким образом, мы «достроили» треугольник Краткое доказательство теоремы площади треугольникадо параллелограмма Краткое доказательство теоремы площади треугольникав котором отрезок Краткое доказательство теоремы площади треугольникатакже является высотой, проведенной к стороне Краткое доказательство теоремы площади треугольника

По формуле площади параллелограмма Краткое доказательство теоремы площади треугольникаТреугольники Краткое доказательство теоремы площади треугольникаравны по трем сторонам (у них сторона Краткое доказательство теоремы площади треугольникаобщая, Краткое доказательство теоремы площади треугольникакак противолежащие стороны параллелограмма). Эти треугольники имеют равные площади. Тогда площадь треугольника Краткое доказательство теоремы площади треугольникасоставляет половину площади параллелограмма Краткое доказательство теоремы площади треугольникачто и требовалось доказать.

Следствие 1

Площадь прямоугольного треугольника равна половине произведения его катетов:

Краткое доказательство теоремы площади треугольника

где Краткое доказательство теоремы площади треугольника— катеты прямоугольного треугольника.

Действительно, в прямоугольном треугольнике высота, проведенная к катету, совпадает с другим катетом.

Следствие 2

Площадь ромба равна половине произведения его диагоналей:

Краткое доказательство теоремы площади треугольника

где Краткое доказательство теоремы площади треугольника — диагонали ромба.

Действительно, диагонали делят ромб на четыре равных прямоугольных треугольника с катетами Краткое доказательство теоремы площади треугольника(рис. 149). Используя следствие 1, имеем:

Краткое доказательство теоремы площади треугольника

Краткое доказательство теоремы площади треугольника

Следствие 3

Площадь равностороннего треугольника со стороной Краткое доказательство теоремы площади треугольникавычисляется по формуле

Краткое доказательство теоремы площади треугольника

Обоснуйте это следствие самостоятельно.

Опорная задача

Медиана делит треугольник на два равновеликих треугольника. Докажите.

Решение:

Пусть Краткое доказательство теоремы площади треугольника— медиана треугольника Краткое доказательство теоремы площади треугольника(рис. 150).

Краткое доказательство теоремы площади треугольника

Проведем высоту Краткое доказательство теоремы площади треугольникатреугольника Краткое доказательство теоремы площади треугольникаЭтот отрезок является одновременно высотой треугольника Краткое доказательство теоремы площади треугольникапроведенной к стороне Краткое доказательство теоремы площади треугольникаи высотой треугольника Краткое доказательство теоремы площади треугольникапроведенной к стороне Краткое доказательство теоремы площади треугольникаУчитывая равенство отрезков Краткое доказательство теоремы площади треугольникаимеем:

Краткое доказательство теоремы площади треугольника

Эта задача имеет интересные обобщения: если высоты двух треугольников равны, то отношение площадей этих треугольников равно отношению их оснований; если основания двух треугольников равны, то отношение площадей этих треугольников равно отношению их высот.

Докажите эти утверждения самостоятельно.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Соотношения между сторонами и углами произвольного треугольника
  • Окружность и круг
  • Описанные и вписанные окружности
  • Плоские и пространственные фигуры
  • Взаимное расположения прямых на плоскости
  • Треугольник
  • Решение треугольников
  • Треугольники и окружность

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:100. Теорема о площади треугольникаСкачать

100. Теорема о площади треугольника

Краткое доказательство теоремы площади треугольника

  • Краткое доказательство теоремы площади треугольника

Краткое доказательство теоремы площади треугольника

§2. Площадь треугольника. Метод площадей

В школьном курсе геометрии доказано несколько формул площади треугольника. Напомним их.

Пусть `A`, `B` и `C` — углы треугольника`ABC`; `a`, `b` и `c` — противолежащие этим углам стороны; `h_a`, `h_b` и `h_c` — высоты к этим сторонам; `r` — радиус вписанной окружности;`R` — радиус описанной окружности; `2p=(a+b+c)` — периметр треугольника; `S` — площадь треугольника

`S=1/2ah_a=1/2bh_b=1/2ch_c`,(1)
`S=1/2 ab sinC=1/2acsinB=1/2bcsinA`,(2)
`S=pr`,(3)
``S=sqrt(p(p-a)(p-b)(p-c))` — формула Герона,(4)
`S=(abc)/(4R)`.(5)

При вычислении площади из этих формул следует выбрать ту, которая в условиях конкретной задачи приводит к более простому решению.

Для примера, рассмотрим два треугольника:

Краткое доказательство теоремы площади треугольника

Краткое доказательство теоремы площади треугольника

`DeltaABC:` `AB=13`, `BC=14`, `AC=15`;

`DeltaKML:` `KL=sqrt(13)`, `LM=sqrt(14)`, `KM=sqrt(15)`;

Надо найти площадь и радиус описанной окружности.

Для треугольника `ABC` удобен ход решения такой:

`p=1/2(AB+BC+AC)=21`, по формуле Герона

`S_(ABC)=sqrt(21*6*7*8)= ul(84)` и по формуле (5)

Для треугольника `KLM` вычисленная по формуле Герона затруднительны, более простой путь — найти косинус, например, угла `M`. По теореме косинусов

тогда `sinM=sqrt(1-64/(210))=(sqrt(146))/(sqrt(14)*sqrt(15))` и по формуле (2):

тогда `R=(KL)/(2sinM)=ul((sqrt(13)*sqrt(14)*sqrt(15))/(2*sqrt(146)))=(sqrt(13)*sqrt7*sqrt(15))/(2*sqrt(73))` (точно также по формуле 5).

Сравнение площадей треугольников обычно опирается на одно из следующих утверждений:

$$ 2.^$$. Площади треугольников с одинаковой высотой относятся как длины соответствующих оснований. В частности, если точка `D` лежит на основании `AC` (рис. 6а), то

Краткое доказательство теоремы площади треугольникаКраткое доказательство теоремы площади треугольника

$$ 2.^$$. Площади треугольников с общим углом относятся как произведения сторон, заключающих этот угол (см. рис. 6б):

$$ 2.^$$. Площади подобных треугольников относятся как квадраты их

сходственных сторон, т. е. если `Delta ABC

DeltaA_1B_1C_1`, то `(S_(A_1B_1C_1))/(S_(ABC))=((A_1B_1)/(AB))^2`.

Все эти утверждения легко доказываются с использованием соответственно формул площади (1) и (2).

Обратим внимание на важное свойство медиан треугольника.

Три медианы треугольника разбивают его на `6` треугольников с общей вершиной и равными площадями.

Известно, что три медианы треугольника пересекаются в одной точке и делятся в отношении `2:1`, считая от вершины. Пусть `O` — точка пересечения медиан треугольника `DeltaABC` площади `S` (рис. 7а). Надо доказать, что площади всех шести треугольников с верш иной в точке `O`, составляющих треугольник `ABC`, равны между собой, т. е. равны `1/6S`.

Краткое доказательство теоремы площади треугольника

Докажем, например, для треугольника `BOM`, что `S_(BOM)=1/6S_(ABC)`.

Точка `M` — середина стороны `BC` (рис. 7б), по утверждению $$ 2.^$$ о сравнении площадей `S_(ABM)=1/2S`. Медиана `BN`, пересекая медиану `AM` в точке `O` (рис. 7в), делит её в отношении `AO:OM=2:1`, т. е. `OM=1/3AM`. По тому же утверждению $$ 2.^$$ площадь треугольника `BOM` составляет `1//3` площади треугольника `ABM`, т. е.

Дан треугольник `ABC`. Точка `D` лежит на стороне `AB`, `AD:DB=1:2`, точка `K` лежит на стороне `BC`, `BK:KC=3:2` (рис. 8а). Отрезки `AK` и `CD` пересекаются в точке `O`. Найти отношение площади четырёхугольника `DBKO` к площади треугольника `ABC`.

1. Обозначим `S_(ABC)=S`, `S_(DBKO)=sigma` и `S_(ADO)=a`. По утверждению $$ 2.^$$ имеем `S_(ABK)=a+sigma=3/5S` (так как `BK:BC=3:5`). Площадь `a` треугольника `ADO` найдём как часть площади треугольника `ADC`, зная, что `S_(ADC)=1/3S` (так как `AD:AB=1:3`).

Краткое доказательство теоремы площади треугольника

2. Через точку `D` проведём прямую `DL«||«AK`. По теореме о пересечении сторон угла параллельными прямыми (`/_ABC`, `DL«||«AK`) имеем `(BL)/(LK)=(BD)/(AD)`, откуда `LK=y`.

По той же теореме (`/_DCB`, `OK«||«DL`) получим `(DO)/(DC)=(LK)/(LC)`, `DO=1/3DC`.

3. Теперь находим `S_(ADO):S_(ADC)=DO:DC`, `a=1/3(1/3S)=1/9S`.

(Можно по теореме Менелая для треугольника `BCD` и секущей `CD:`

`(BK)/(KC)*(CO)/(OD)*(DA)/(AB)=1 iff 3/2*(CO)/(OD)*1/3=1 iff CO=2OD=>OD=1/3DC`).

Находим площадь: `sigma=3/5S-a=(3/5-1/9)S=22/45S`.

Найти площадь треугольника, две стороны которого равны `3` и `7`, а медиана к третьей стороне равна `4` (рис. 9).

Краткое доказательство теоремы площади треугольника

Пусть `AB=3`, `BC=7`, `AM=MC` и `BM=4`. Достроим треугольник `ABC` до параллелограмма, для этого на прямой `BM` отложим отрезок `MD=BM` и соединим точки: `A` с `D` и `C` с `D`. Противоположные стороны параллелограмма равны: `(DC=AB)` и равны площади треугольников `ABC` и `DBC` (общее основание `BC` и равные высоты из вершин `A` и `D`).

В треугольнике `DBC` известны все три стороны: `BC=7`, `DC=3`, `BD=2BM=8`.

Находим его площадь по формуле Герона: `p=9`, `S_(BCD)=6sqrt3`.

Значит и `S_(ABC)=6sqrt3`.

В решении этой задачи дополнительным построением получен треугольник, площадь которого равна площади заданного и легко вычисляется по данным задачи. Приведём ещё одну задачу, где сначала вычисляется площадь дополнительно построенной фигуры, а затем легко находится искомая площадь.

Найти площадь треугольника, если его медианы равны `3`, `4` и `5`.

Пусть `O` — точка пересечения медиан треугольника `ABC` (рис. 10) и пусть `m_a=AM=3`, `m_b=BN=4` и `m_c=CP=5`.

По свойству медиан `AO=2/3m_a`, `CO=2/3m_c` и `ON=1/3m_b`. В треугольнике `AOC` известны две стороны `AO` и `CO` и медиана третьей стороны `ON`. Площадь этого треугольника найдём как в предыдущей задаче.

Достроим треугольник `AOC` до параллелограмма `AOCD`, `S_(AOC)=S_(DOC)`, в треугольнике `DOC` известны три стороны:

`DO=2ON=2/3m_b`, `OC=2/3m_c`, `DC=AO=2/3m_a`.

Площадь треугольника `DOC` вычисляем по формуле Герона `S_1=S_(AOC)=S_(DOC)=8/3`. Сравним теперь площадь треугольника `ABC` (обозначим её `S`) с площадью треугольника `AOC`. Из теоремы 2 о медианах и площадях следует `S_(AOC)=S_(AON)+S_(NOC)=2*1/6S=1/3S`.

Краткое доказательство теоремы площади треугольника

В следующей задаче докажем лемму об отношении площади треугольника к площади другого треугольника, построенного из медиан первого.

Найти отношение площади `S` треугольника к площади `S_0` треугольника, составленного из медиан первого.

Рассмотрим рис. 10. В построенном треугольнике `OCD` стороны таковы: `OC=2/3m_c`, `OD=2/3m_b`, `CD=2/3m_a`. Очевидно, что треугольник со сторонами `m_a`, `m_b`, `m_c` подобен (по третьему признаку) треугольнику со сторонами `2/3m_a`, `2/3m_b`, `2/3m_c`.

Из решения предыдущей задачи следует, что `S_(OCD)=S_1=1/3S` (здесь `S` — площадь треугольника `ABC`). Кроме того, площади подобных треугольников относятся как квадраты сходственных сторон, поэтому `(S_1)/(S_0)=(2/3)^2`. Таким образом, имеем `S_0=9/4S_1=3/4S`, т. е.

`S_(m_am_bm_c)=3/4S_(abc)`.

Из рассуждений в решении Примера 9 следует, что всегда существует треугольник со сторонами, равными медианам данного треугольника, поскольку всегда существует подобный ему треугольник со сторонами `2/3m_a`, `2/3m_b`, `2/3m_c`. Кроме того, становится ясным план построения треугольника по трём отрезкам, равным его медианам: сначала строится треугольник `OCD` (см. рис. 10) со сторонами `2/3m_a`, `2/3m_b`, `2/3m_c`, затем точка `N` — середина отрезка `OD`, потом точка `A` (из `AN=NC`) и точка `B` (из `OB=OD`). Это построение осуществимо, если существует треугольник `OCD`, т. е. если существует треугольник со сторонами `m_a`, `m_b`, `m_c`. Итак, вывод: три отрезка могут быть медианами некоторого треугольника тогда и только тогда, когда из них можно составить треугольник.

Около окружности радиуса `sqrt3` описан треугольник. Найти его площадь, если одна из его сторон точкой касания делится на отрезки `9` и `5`.

Пусть `AP=9`, `PC=5` (рис. 11) и пусть `BM=x`. По свойству касательных `AM=AP`, `CN=CP` и `BN=BM`, поэтому стороны треугольника таковы: `AC=14`, `AB=9+x`, `BC=5+x`, тогда `p=14+x`. (Заметим, что `p=AC+BM`!). По формулам площади (3) и (4) имеем: `S=pr=(14+x)sqrt3` и `S=sqrt((14+x)x*5*9)`. Приравниваем правые части, возводим в квадрат, приводим подобные члены, получаем `x=1`. Вычисляем площадь треугольника:

Краткое доказательство теоремы площади треугольника

Приём, применённый в решении этой задачи, когда площадь фигуры выражается двумя различными способами, часто используется в задачах на доказательство.

Проведём два примера, в каждом выведем полезную формулу.

В треугольнике `ABC` угол `C` равен `varphi`, `AC=b`, `BC=a` (рис. 12). Доказать, что биссектриса `CD` равна `(2ab)/(a+b) cos varphi/2`.

Краткое доказательство теоремы площади треугольника

Обозначим `CD=x`. Очевидно, что `S_(ABC)=S_(ACD)+S_(DCB)`. По формуле (2) `S_(ABC)=1/2 ab sin varphi`, `S_(ACD)=1/2 bx sin varphi/2`, `S_(BDC)=1/2 ax sin varphi/2`. Таким образом, имеем: `1/2 ab sin varphi=1/2(a+b)x sin varphi/2`. Используем формулу синуса двойного угла `sin varphi=2sin varphi/2 cos varphi/2`, получим:

`x=(2ab)/(a+b)cos varphi/2`.

называется окружность, касающаяся одной из сторон треугольника и продолжений двух других сторон. Таких окружностей, очевидно, три (рис. 13). Их радиусы обычно обозначаются `r_a`, `r_b`, `r_c` в зависимости от того, какой стороны окружность касается.

Краткое доказательство теоремы площади треугольника

Вневписанная окружность касается стороны `a=BC` треугольника `ABC` (рис. 14). Доказать, что `S_(ABC)=r_a(p-a)`, где `2p=a+b+c`.

Краткое доказательство теоремы площади треугольника

Центр окружности `I_a` лежит на пересечении биссектрисы угла `A` и биссектрис внешних углов при вершинах `B` и `C`. Легко видеть, что если `D`, `F` и `E` — точки касания, то `I_aD=I_aF=I_aE=r_a`.

Считаем площадь `S_0` четырёхугольника `ABI_aC`:

`S_0=S_(ABC)+S_(BCI_a)` и `S_0=S_(ABI_a)+S_(ACI_a)`, откуда

Видео:9 класс, 12 урок, Теорема о площади треугольникаСкачать

9 класс, 12 урок, Теорема о площади треугольника

Теорема о площади треугольника, теоремы синусов и косинусов

Вы будете перенаправлены на Автор24

Видео:8 класс, 14 урок, Площадь треугольникаСкачать

8 класс, 14 урок, Площадь треугольника

Теорема о площади треугольника

Площадь треугольника равна половине произведения двух сторон на синус угла между этими сторонами.

Доказательство.

Пусть нам дан произвольный треугольник $ABC$. Обозначим длины сторон этого треугольника как $BC=a$, $AC=b$. Введем декартову систему координат, так, что точка $C=(0,0)$, точка $B$ лежит на правой полуоси $Ox$, а точка $A$ лежит в первой координатной четверти. Проведем высоту $h$ из точки $A$ (рис. 1).

Краткое доказательство теоремы площади треугольника

Рисунок 1. Иллюстрация теоремы 1

В этой системе координат, получаем, что

Высота $h$ равняется ординате точки $A$, следовательно

Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

Доказательство.

Пусть нам дан произвольный треугольник $ABC$. Обозначим длины сторон этого треугольника как $BC=a$, $AC=b,$ $AC=c$ (рис. 2).

Краткое доказательство теоремы площади треугольника

По теореме 1, имеем

Приравнивая их попарно, и получим, что

Видео:✓ Новая формула площади треугольника | Ботай со мной #108 | Борис ТрушинСкачать

✓ Новая формула площади треугольника | Ботай со мной #108 | Борис Трушин

Теорема косинусов

Квадрат стороны треугольника равен сумме квадратов двух других сторон треугольника без удвоенного произведения этих сторон на косинус угла между этими сторонами.

Готовые работы на аналогичную тему

Доказательство.

Пусть нам дан произвольный треугольник $ABC$. Обозначим длины его сторон как $BC=a$, $AC=b,$ $AB=c$. Введем декартову систему координат, так, что точка $A=(0,0)$, точка $B$ лежит на положительной полуоси $Ox$, а точка $C$ лежит в первой координатной четверти (рис. 3).

Краткое доказательство теоремы площади треугольника

В этой системе координат, получаем, что

Найдем длину стороны $BC$ по формуле расстояния между точками

Видео:Геометрия 9 класс : Теорема о площади треугольникаСкачать

Геометрия 9 класс : Теорема о площади треугольника

Пример задачи на использование данных теорем

Доказать, что диаметр описанной окружности произвольного треугольника равен отношению любой стороны треугольника к синусу противолежащего этой стороне угла.

Решение.

Пусть нам дан произвольный треугольник $ABC$. $R$ — радиус описанной окружности. Проведем диаметр $BD$ (Рис. 4).

Краткое доказательство теоремы площади треугольника

Так как сторона $BD$ треугольника $DCB$ лежит на диаметре вписанной окружности, то он прямоугольный, следовательно, $sinD=frac=frac$.То есть

ч. т. д.

Найти третью сторону треугольника, если две его стороны равны 5 и 7, соответственно, а угол между ними равен $^0.$

Решение.

Обозначим искомую сторону через $a$. Используя теорему 3, получим

Ответ: $sqrt$.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 11 04 2021

💥 Видео

Теорема о площади треугольника | Геометрия 7-9 класс #95 | ИнфоурокСкачать

Теорема о площади треугольника | Геометрия 7-9 класс #95 | Инфоурок

Теорема о площади треугольника.Скачать

Теорема о площади треугольника.

Площадь по теореме Герона #математика #площадь #треугольник #герона #егэ #огэ #найтиплощадь #теоремаСкачать

Площадь по теореме Герона #математика #площадь #треугольник #герона #егэ #огэ #найтиплощадь #теорема

Геометрия 8 класс (Урок№10 - Площадь треугольника.)Скачать

Геометрия 8 класс (Урок№10 - Площадь треугольника.)

Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

Самое простое Доказательство теоремы ПифагораСкачать

Самое простое Доказательство теоремы Пифагора

Теорема о площади треугольника. 9 классСкачать

Теорема о площади треугольника. 9 класс

Секретные формулы площади треугольникаСкачать

Секретные формулы площади треугольника

11 класс, 47 урок, Формулы площади треугольникаСкачать

11 класс, 47 урок, Формулы площади треугольника

Геометрия 8 Площадь треугольникаСкачать

Геометрия 8 Площадь треугольника

Площади треугольников с равным углом.Скачать

Площади треугольников с равным углом.

8 класс, 18 урок, Формула ГеронаСкачать

8 класс, 18 урок, Формула Герона

Геометрия Доказательство Площадь треугольника равна половине произведения двух его сторон и синусаСкачать

Геометрия Доказательство Площадь треугольника равна половине произведения двух его сторон и синуса
Поделиться или сохранить к себе: