Косинус 150 градусов на окружности

Косинус 150 градусов

Пользуясь формулой приведения для косинуса тупого угла от 90 до 180 градусов, найдем косинус 150 градусов.

Косинус 150 градусов на окружности

По определению, косинус угла альфа на единичной окружности — это абсцисса точки, полученной поворотом на угол альфа из точки (1;0) относительно точки О (начала координат).

Косинус 150 градусов на окружности

Для косинуса тупого угла от 90 до 180 градусов имеет место формула приведения:

Косинус 150 градусов на окружности

Чтобы воспользоваться этой формулой, выразим 150 градусов через 180:

Косинус 150 градусов на окружности

Поставляем это выражение в формулу приведения.

С учетом значения косинуса 30 градусов, имеем:

Видео:Как видеть тангенс? Тангенс угла с помощью единичного круга.Скачать

Как видеть тангенс? Тангенс угла с помощью единичного круга.

Таблица КОСИНУСОВ для углов от 0° до 360° градусов

КОСИНУС (COS α) острого угла в прямоугольном треугольнике равен отношению прилежащего катета к его гипотенузе…

Малая таблица значений тригонометрических функций (в радианах и градусах)

α (радианы)0π/6π/4π/3π/2π3π/2
α (градусы)30°45°60°90°180°270°360°
cos α (Косинус)13/22/21/20-101

Полная таблица косинусов для углов от 0° до 360°

Угол в градусахCos (Косинус)
1
0.9998
0.9994
0.9986
0.9976
0.9962
0.9945
0.9925
0.9903
0.9877
10°0.9848
11°0.9816
12°0.9781
13°0.9744
14°0.9703
15°0.9659
16°0.9613
17°0.9563
18°0.9511
19°0.9455
20°0.9397
21°0.9336
22°0.9272
23°0.9205
24°0.9135
25°0.9063
26°0.8988
27°0.891
28°0.8829
29°0.8746
30°0.866
31°0.8572
32°0.848
33°0.8387
34°0.829
35°0.8192
36°0.809
37°0.7986
38°0.788
39°0.7771
40°0.766
41°0.7547
42°0.7431
43°0.7314
44°0.7193
45°0.7071
46°0.6947
47°0.682
48°0.6691
49°0.6561
50°0.6428
51°0.6293
52°0.6157
53°0.6018
54°0.5878
55°0.5736
56°0.5592
57°0.5446
58°0.5299
59°0.515
60°0.5
61°0.4848
62°0.4695
63°0.454
64°0.4384
65°0.4226
66°0.4067
67°0.3907
68°0.3746
69°0.3584
70°0.342
71°0.3256
72°0.309
73°0.2924
74°0.2756
75°0.2588
76°0.2419
77°0.225
78°0.2079
79°0.1908
80°0.1736
81°0.1564
82°0.1392
83°0.1219
84°0.1045
85°0.0872
86°0.0698
87°0.0523
88°0.0349
89°0.0175
90°0

Таблица косинусов для углов от 91° до 180°

Уголcos (Косинус)
91°-0.0175
92°-0.0349
93°-0.0523
94°-0.0698
95°-0.0872
96°-0.1045
97°-0.1219
98°-0.1392
99°-0.1564
100°-0.1736
101°-0.1908
102°-0.2079
103°-0.225
104°-0.2419
105°-0.2588
106°-0.2756
107°-0.2924
108°-0.309
109°-0.3256
110°-0.342
111°-0.3584
112°-0.3746
113°-0.3907
114°-0.4067
115°-0.4226
116°-0.4384
117°-0.454
118°-0.4695
119°-0.4848
120°-0.5
121°-0.515
122°-0.5299
123°-0.5446
124°-0.5592
125°-0.5736
126°-0.5878
127°-0.6018
128°-0.6157
129°-0.6293
130°-0.6428
131°-0.6561
132°-0.6691
133°-0.682
134°-0.6947
135°-0.7071
136°-0.7193
137°-0.7314
138°-0.7431
139°-0.7547
140°-0.766
141°-0.7771
142°-0.788
143°-0.7986
144°-0.809
145°-0.8192
146°-0.829
147°-0.8387
148°-0.848
149°-0.8572
150°-0.866
151°-0.8746
152°-0.8829
153°-0.891
154°-0.8988
155°-0.9063
156°-0.9135
157°-0.9205
158°-0.9272
159°-0.9336
160°-0.9397
161°-0.9455
162°-0.9511
163°-0.9563
164°-0.9613
165°-0.9659
166°-0.9703
167°-0.9744
168°-0.9781
169°-0.9816
170°-0.9848
171°-0.9877
172°-0.9903
173°-0.9925
174°-0.9945
175°-0.9962
176°-0.9976
177°-0.9986
178°-0.9994
179°-0.9998
180°-1

Таблица косинусов для углов от 180° до 270°

Уголcos (косинус)
181°-0.9998
182°-0.9994
183°-0.9986
184°-0.9976
185°-0.9962
186°-0.9945
187°-0.9925
188°-0.9903
189°-0.9877
190°-0.9848
191°-0.9816
192°-0.9781
193°-0.9744
194°-0.9703
195°-0.9659
196°-0.9613
197°-0.9563
198°-0.9511
199°-0.9455
200°-0.9397
201°-0.9336
202°-0.9272
203°-0.9205
204°-0.9135
205°-0.9063
206°-0.8988
207°-0.891
208°-0.8829
209°-0.8746
210°-0.866
211°-0.8572
212°-0.848
213°-0.8387
214°-0.829
215°-0.8192
216°-0.809
217°-0.7986
218°-0.788
219°-0.7771
220°-0.766
221°-0.7547
222°-0.7431
223°-0.7314
224°-0.7193
225°-0.7071
226°-0.6947
227°-0.682
228°-0.6691
229°-0.6561
230°-0.6428
231°-0.6293
232°-0.6157
233°-0.6018
234°-0.5878
235°-0.5736
236°-0.5592
237°-0.5446
238°-0.5299
239°-0.515
240°-0.5
241°-0.4848
242°-0.4695
243°-0.454
244°-0.4384
245°-0.4226
246°-0.4067
247°-0.3907
248°-0.3746
249°-0.3584
250°-0.342
251°-0.3256
252°-0.309
253°-0.2924
254°-0.2756
255°-0.2588
256°-0.2419
257°-0.225
258°-0.2079
259°-0.1908
260°-0.1736
261°-0.1564
262°-0.1392
263°-0.1219
264°-0.1045
265°-0.0872
266°-0.0698
267°-0.0523
268°-0.0349
269°-0.0175
270°0

Таблица косинусов для углов от 270° до 360°

УголCos (Косинус)
271°0.0175
272°0.0349
273°0.0523
274°0.0698
275°0.0872
276°0.1045
277°0.1219
278°0.1392
279°0.1564
280°0.1736
281°0.1908
282°0.2079
283°0.225
284°0.2419
285°0.2588
286°0.2756
287°0.2924
288°0.309
289°0.3256
290°0.342
291°0.3584
292°0.3746
293°0.3907
294°0.4067
295°0.4226
296°0.4384
297°0.454
298°0.4695
299°0.4848
300°0.5
301°0.515
302°0.5299
303°0.5446
304°0.5592
305°0.5736
306°0.5878
307°0.6018
308°0.6157
309°0.6293
310°0.6428
311°0.6561
312°0.6691
313°0.682
314°0.6947
315°0.7071
316°0.7193
317°0.7314
318°0.7431
319°0.7547
320°0.766
321°0.7771
322°0.788
323°0.7986
324°0.809
325°0.8192
326°0.829
327°0.8387
328°0.848
329°0.8572
330°0.866
331°0.8746
332°0.8829
333°0.891
334°0.8988
335°0.9063
336°0.9135
337°0.9205
338°0.9272
339°0.9336
340°0.9397
341°0.9455
342°0.9511
343°0.9563
344°0.9613
345°0.9659
346°0.9703
347°0.9744
348°0.9781
349°0.9816
350°0.9848
351°0.9877
352°0.9903
353°0.9925
354°0.9945
355°0.9962
356°0.9976
357°0.9986
358°0.9994
359°0.9998
360°1

Как распечатать таблицу? Левой кнопкой на компьютерной мишке выделите нужную часть таблицы, на выделенном фоне нажмите правую кнопку мишки и в появившемся меню перейдете в пункт «Печать».

Чему равен косинус 30? …

— Ищем в таблице соответствующее значение. Правильный ответ: 0.866

Видео:ЗНАЧЕНИЯ СИНУСА И КОСИНУСА НА ОКРУЖНОСТИСкачать

ЗНАЧЕНИЯ СИНУСА И КОСИНУСА НА ОКРУЖНОСТИ

Таблицы значений синусов, косинусов, тангенсов, котангенсов (sin, cos, tg, ctg)

Таблицы значений синусов (sin), косинусов (cos), тангенсов (tg), котангенсов (ctg) — это мощный и полезный инструмент, помогающий решать множество задач, как теоретического, так и прикладного характера. В этой статье мы приведем таблицу основных тригонометрических функций (синусов, косинусов, тангенсов и котангенсов) для углов 0, 30, 45, 60, 90, . 360 градусов ( 0 , π 6 , π 3 , π 2 , . . . , 2 π радиан). Также будут показаны отдельные таблицы Брадиса для синусов и косинусов, тангенсов и котангенсов с пояснением, как их использовать для нахождения значений основных тригонометрических функций.

Видео:№1016. Вычислите синусы, косинусы и тангенсы углов 120°, 135°, 150°.Скачать

№1016. Вычислите синусы, косинусы и тангенсы углов 120°, 135°, 150°.

Таблица основных тригонометрических функций для углов 0, 30, 45, 60, 90, . 360 градусов

Исходя из определений синуса, косинуса, тангенса и котангенса можно найти значения этих функций для углов 0 и 90 градусов

sin 0 = 0 , cos 0 = 1 , t g 0 = 0 , котангенс нуля — не определен,

sin 90 ° = 1 , cos 90 ° = 0 , с t g 90 ° = 0 , тангенс дявяноста градусов не определен.

Значения синусов, косинусов, тангенсов и котангенсов в курсе геометрии определяются как соотношения сторон прямоугольного треугольника, углы которого равны 30, 60 и 90 градусов, и также 45, 45 и 90 градусов.

Определение тригонометрических функуций для острого угла в прямоугольном треугольнике

Синус — отношение противолежащего катета к гипотенузе.

Косинус — отношение прилежащего катета к гипотенузе.

Тангенс — отношение противолежащего катета к прилежащему.

Котангенс — отношение прилежащего катета к противолежащему.

В соответствии с определениями находятся значения функций:

sin 30 ° = 1 2 , cos 30 ° = 3 2 , t g 30 ° = 3 3 , c t g 30 ° = 3 , sin 45 ° = 2 2 , cos 45 ° = 2 2 , t g 45 ° = 1 , c t g 45 ° = 1 , sin 60 ° = 3 2 , cos 45 ° = 1 2 , t g 45 ° = 3 , c t g 45 ° = 3 3 .

Сведем эти значения в таблицу и назовем ее таблицей основных значений синуса, косинуса, тангенса и котангенса.

Таблица основных значений синусов, косинусов, тангенсов и котангенсов

α °030456090sin α01 22 23 21cos α13 22 21 20t g α03 313н е о п р е д е л е нc t g αн е о п р е д е л е н313 30α , р а д и а н0π 6π 4π 3π 2

Одно из важных свойств тригонометрических функций — периодичность. На основе этого свойства данную таблицу можно расширить,используя формулы приведения. Ниже представим расширенную таблицу значений основных тригонометрических функций для углов 0, 30, 60, . ,120, 135, 150, 180, . , 360 градусов ( 0 , π 6 , π 3 , π 2 , . . . , 2 π радиан).

Таблица синусов, косинусов, тангенсов и котангенсов

α °030456090120135150180210225240270300315330360sin α01 22 23 213 22 21 20— 1 2— 2 2— 3 2— 1— 3 2— 2 2— 1 20cos α13 22 21 20— 1 2— 2 2— 3 2— 1— 3 2— 2 2— 1 201 22 23 21t g α03 313—— 1— 3 3003 313—— 3— 10c t g α—313 30— 3 3— 1— 3—313 30— 3 3— 1— 3—α , р а д и а н0π 6π 4π 3π 22 π 33 π 45 π 6π7 π 65 π 44 π 33 π 25 π 37 π 411 π 62 π

Периодичность синуса, косинуса, тангенса и котангенса позволяет расширять эту таблицу до сколь угодно больших значений углов. Значения, собранные в таблице, используются при решении задач чаще всего, поэтому их рекомендуется выучить наизусть.

Видео:Формулы приведения - как их легко выучить!Скачать

Формулы приведения - как их легко выучить!

Как пользоваться таблицей основных значений тригонометрических функций

Принцип пользования таблицей значений синусов, косинусов, тангенсов и котангенсов понятен на интуитивном уровне. Пересечение строки и столбца дает значение функции для конкретного угла.

Пример. Как пользоваться таблицей синусов, косинусов, тангенсов и котангенсов

Нужно узнать, чему равен sin 7 π 6

Находим в таблице столбец, значение последней ячейки которого равно 7 π 6 радиан — то же самое, что 210 градусов. Затем выбираем сроку таблицы, в которой представлены значения синусов. На пересечении строки и столбца находим искомое значение:

sin 7 π 6 = — 1 2

Видео:Тригонометрическая окружность. Как выучить?Скачать

Тригонометрическая окружность. Как выучить?

Таблицы Брадиса

Таблица Брадиса позволяет вычислить значение синуса, косинуса, тангенса или котангенса с точностью до 4-х знаков после запятой без использования вычислительной техники. Это своего рода замена инженерному калькулятору.

Владимир Модестович Брадис (1890 — 1975) — советский математик-педагог, с 1954 года член-корреспондент АПН СССР. Таблицы четырёхзначных логарифмов и натуральных тригонометрических величин, разработанные Брадисом, впервые вышли в 1921 году.

Сначала приведем таблицу Брадиса для синусов и косинусов. Она позволяет достаточно точно вычислять приближенные значения этих функций для углов, содержащих целое количество градусов и минут. В крайнем левом столбце таблицы представлены градусы, а в верхней строке — минуты. Отметим, что все значения углов таблицы Брадиса кратны шести минутам.

Таблица Брадиса для синусов и косинусов

sin0′6′12′18′24′30′36′42′48′54′60′cos1′2′3′
0.000090°
0.0000001700350052007000870105012201400157017589°369
0175019202090227024402620279029703140332034988°369
0349036603840401041904360454047104880506052387°369
0523054105580576059306100628064506630680069886°369
06980715073207500767078508020819083708540.087285°369
0.0872088909060924094109580976099310111028104584°369
1045106310801097111511321149116711841201121983°369
1219123612531271128813051323134013571374139282°369
1392140914261444146114781495151315301547156481°369
15641582159916161633165016681685170217190.173680°369
10°0.1736175417711788180518221840185718741891190879°369
11°1908192519421959197719942011202820452062207978°369
12°2079209621132130214721642181219822152233225077°369
13°2250226722842300231723342351236823852402241976°368
14°24192436245324702487250425212538255425710.258875°368
15°0.2588260526222639265626722689270627232740275674°368
16°2756277327902807282328402857287428902907292473°368
17°2924294029572974299030073024304030573074309072°368
18°3090310731233140315631733190320632233239325671°368
19°32563272328933053322333833553371338734040.342070°358
20°0.3420343734533469348635023518353535513567358469°358
21°3584360036163633364936653681369737143730374668°358
22°3746376237783795381138273843385938753891390767°358
23°3907392339393955397139874003401940354051406766°358
24°40674083409941154131414741634179419542100.422665°358
25°0.4226424242584274428943054321433743524368438464°358
26°4384439944154431444644624478449345094524454063°358
27°4540455545714586460246174633464846644679469562°358
28°4695471047264741475647724787480248184833484861°358
29°48484863487948944909492449394955497049850.500060°358
30°0.5000501550305045506050755090510551205135515059°358
31°5150516551805195521052255240525552705284529958°257
32°5299531453295344535853735388540254175432544657°257
33°5446546154765490550555195534554855635577559256°257
34°55925606562156355650566456785693570757210.573655°257
35°0.57365750576457795793580758215835585058640.587854°257
36°5878589259065920593459485962597659906004601853°257
37°6018603260466060607460886101611561296143615752°257
38°6157617061846198621162256239625262666280629351°257
39°62936307632063346347636163746388640164140.642850°247
40°0.6428644164556468648164946508652165346547656149°247
41°6561657465876600661366266639665266656678669148°247
42°6691670467176730674367566769678267946807682047°246
43°6820683368456858687168846896890969216934694746°246
44°69476959697269846997700970227034704670590.707145°246
45°0.7071708370967108712071337145715771697181719344°246
46°7193720672187230724272547266727872907302731443°246
47°7314732573377349736173737385739674087420743142°246
48°7431744374557466747874907501751375247536754741°246
49°75477559757075817593760476157627763876490.766040°246
50°0.7660767276837694770577167727773877497760777139°246
51°7771778277937804781578267837784878597869788038°245
52°7880789179027912792379347944795579657976798637°245
53°7986799780078018802880398049805980708080809036°235
54°80908100811181218131814181518161817181810.819235°235
55°0.8192820282118221823182418251826182718281829034°235
56°8290830083108320832983398348835883688377838733°235
57°8387839684068415842584348443845384628471848032°235
58°8480849084998508851785268536854585548563857231°235
59°85728581859085998607861686258634864386520.866030°134
60°0.8660866986788686869587048712872187298738874629°134
61°8746875587638771878087888796880588138821882928°134
62°8829883888468854886288708878888688948902891027°134
63°8910891889268934894289498957896589738980898826°134
64°89888996900390119018902690339041904890560.906325°134
65°0.9063907090789085909291009107911491219128913524°124
66°9135914391509157916491719178918491919198920523°123
67°9205921292199225923292399245925292599256927222°123
68°9272927892859291929893049311931793239330933621°123
69°93369342934893549361936793739379938393910.939720°123
70°93979403940994159421942694329438944494490.945519°123
71°9455946194669472947894839489949495009505951118°123
72°9511951695219527953295379542954895539558956317°123
73°9563956895739578958395889593959896039608961316°122
74°96139617962296279632963696419646965096550.965915°122
75°9659966496689673967796819686969096949699970314°112
76°9703970797119715972097249728973297369740974413°112
77°9744974897519755975997639767977097749778978112°112
78°9781978597899792979697999803980698109813981611°112
79°98169820982398269829983398369839984298450.984810°112
80°0.98489851985498579860986398669869987198749877011
81°98779880988298859888989098939895989899009903011
82°99039905990799109912991499179919992199239925011
83°99259928993099329934993699389940994299439945011
84°99459947994999519952995499569957995999609962011
85°99629963996599669968996999719972997399749976001
86°99769977997899799980998199829983998499859986000
87°99869987998899899990999099919992999399939994000
88°99949995999599969996999799979997999899980.9998000
89°999899999999999999991.00001.00001.00001.00001.00001.0000000
90°1.0000
sin60′54′48′42′36′30′24′18′12′6′0′cos1′2′3′

Для нахождения значений синусов и косинусов углов, не представленных в таблице, необходимо использовать поправки.

Теперь приведем таблицу Брадиса для тангенсов и котангенсов. Она содержит значения тангенсов углов от 0 до 76 градусов, и котангенсов углов от 14 до 90 градусов.

Таблица Брадиса для тангенса и котангенса

tg0′6′12′18′24′30′36′42′48′54′60′ctg1′2′3′
090°
0,000001700350052007000870105012201400157017589°369
0175019202090227024402620279029703140332034988°369
0349036703840402041904370454047204890507052487°369
0524054205590577059406120629064706640682069986°369
06990717073407520769078708050822084008570,087585°369
0,0875089209100928094509630981099810161033105184°369
1051106910861104112211391157117511921210122883°369
1228124612631281129913171334135213701388140582°369
1405142314411459147714951512153015481566158481°369
15841602162016381655167316911709172717450,176380°369
10°0,1763178117991817183518531871189019081926194479°369
11°1944196219801998201620352053207120892107212678°369
12°2126214421622180219922172235225422722290230977°369
13°2309232723452364238224012419243824562475249376°369
14°24932512253025492568258626052623264226610,267975°369
15°0,2679269827172736275427732792281128302849286774°369
16°2867288629052924294329622981300030193038305773°369
17°3057307630963115313431533172319132113230324972°3610
18°3249326932883307332733463365338534043424344371°3610
19°34433463348235023522354135613581360036200,364070°3710
20°0,3640365936793699371937393759377937993819383969°3710
21°3839385938793899391939393959397940004020404068°3710
22°4040406140814101412241424163418342044224424567°3710
23°4245426542864307432743484369439044114431445266°3710
24°44524473449445154536455745784599462146420,466365°4711
25°0,4663468447064727474847704791481348344856487764°4711
26°4877489949214942496449865008502950515073509563°4711
27°5095511751395161518452065228525052725295531762°4711
28°5317534053625384540754305452547554985520554361°4811
29°55435566558956125635565856815704572757500,577460°4812
30°0,5774579758205844586758905914593859615985600959°4812
31°6009603260566080610461286152617662006224624958°4812
32°6249627362976322634663716395642064456469649457°4812
33°6494651965446569659466196644666966946720674556°4813
34°67456771679668226847687368996924695069760,700255°4913
35°0,7002702870547080710771337159718672127239726554°4813
36°7265729273197346737374007427745474817508753653°5914°
37°7536756375907618764676737701772977577785781352°5914
38°7813784178697898792679547983801280408069809851°5914
39°80988127815681858214824382738302833283610,839150°51015
40°0,83918421845184818511854185718601863286620,869349°51015
41°8693872487548785881688478878891089418972900448°51016
42°9004903690679099913191639195922892609293932547°61116
43°93259358939194249457949095239556959096230,965746°61117
44°96579691972597599793982798619896993099651,000045°61117
45°1,0000003500700105014101760212024702830319035544°61218
46°0355039204280464050105380575061206490686072443°61218
47°0724076107990837087509130951099010281067110642°61319
48°1106114511841224126313031343138314231463150441°71320
49°15041544158516261667170817501792183318751,191840°71421
50°1,1918196020022045208821312174221822612305234939°71422
51°2349239324372482252725722617266227082753279938°81523
52°2799284628922938298530323079312731753222327037°81624
53°3270331933673416346535143564361336633713376436°81625
54°37643814386539163968401940714124417642291,428135°91726
55°1,4281433543884442449645504605465947154770482634°91827
56°4826488249384994505151085166522452825340539933°101929
57°5399545855175577563756975757581858805941600332°102030
58°6003606661286191625563196383644765126577664331°112132
59°66436709677568426909697770457113718272511,732130°112334
60°1,7321,7391,7461,7531,7601,7671,7751,7821,7891,7971,80429°124
61°1,8041,8111,8191,8271,8341,8421,8491,8571,8651,8731,88128°134
62°1,8811,8891,8971,9051,9131,9211,9291,9371,9461,9541,96327°134
63°1,9631,9711,9801,9881,9972,0062,0142,0232,0322,0412,0526°134
64°2,0502,0592,0692,0782,0872,0972,1062,1162,1252,1352,14525°235
65°2,1452,1542,1642,1742,1842,1942,2042,2152,2252,2362,24624°235
66°2,2462,2572,2672,2782,2892,32,3112,3222,3332,3442,35623°245
67°2,3562,3672,3792,3912,4022,4142,4262,4382,4502,4632,47522°246
68°2,4752,4882,52,5132,5262,5392,5522,5652,5782,5922,60521°246
69°2,6052,6192,6332,6462,662,6752,6892,7032,7182,7332,74720°257
70°2,7472,7622,7782,7932,8082,8242,8402,8562,8722,8882,90419°358
71°2,9042,9212,9372,9542,9712,9893,0063,0243,0423,063,07818°369
72°3,0783,0963,1153,1333,1523,1723,1913,2113,2303,2513,27117°3610
73°3,2713,2913,3123,3333,3543,3763710
3,3983,423,4423,4653,48716°4711
74°3,4873,5113,5343,5583,5823,6064812
3,6303,6553,6813,7063,73215°4813
75°3,7323,7583,7853,8123,8393,8674913
3,8953,9233,9523,9814,01114°51014
tg60′54′48′42′36′30′24′18′12′6′0′ctg1′2′3′

Видео:18+ Математика без Ху!ни. Формулы ПриведенияСкачать

18+ Математика без Ху!ни. Формулы Приведения

Как пользоваться таблицами Брадиса

Рассмотрим таблицу Брадиса для синусов и косинусов. Все, что относится к синусам находится вверху и слева. Если нам нужны косинусы — смотрим на правую сторону внизу таблицы.

Для нахождения значений синуса угла нужно найти пересечение строки, содержащей в крайней левой ячейке необходимое количество градусов, и столбца, содержащего в верхней ячейке необходимое число минут.

Если точного значения угла нет в таблице Брадиса, прибегаем к помощи поправок. Поправки на одну, две и три минуты даны в крайних правых столбцах таблицы. Для нахождения значения синуса угла, которого нет в таблице, находим самое близкое к нему значение. После этого прибавляем или отнимаем поправку, соответствующую разнице между углами.

В случае, если мы ищем синус угла, который больше 90 градусов, сначала нужно воспользоваться формулами приведения, а уже потом — таблицей Брадиса.

Пример. Как пользоваться таблицей Брадиса

Пусть нужно найти синус угла 17 ° 44 ‘ . По таблице находим, чему равен синус 17 ° 42 ‘ и прибавляем к его значению поправку на две минуты:

17 ° 44 ‘ — 17 ° 42 ‘ = 2 ‘ ( н е о б х о д и м а я п о п р а в к а ) sin 17 ° 44 ‘ = 0 . 3040 + 0 . 0006 = 0 . 3046

Принцип работы с косинусами, тангенсами и котангенсами аналогичен. Однако, важно помнить о знаке поправок.

При вычислении значений синусов поправка имеет положительный знак, а при вычислении косинусов поправку необходимо брать с отрицательным знаком.

🔥 Видео

Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

Радианная Мера Угла - Как Переводить Градусы в Радианы // Урок Алгебры 10 классСкачать

Радианная Мера Угла - Как Переводить Градусы в Радианы // Урок Алгебры 10 класс

TRIGONOMETRY | Trig Ratios | Exact Value of COS 150 Degrees | Unit CircleСкачать

TRIGONOMETRY | Trig Ratios | Exact Value of COS 150 Degrees | Unit Circle

Синус, косинус, тангенс и котангенс углов от 0 до 180 градусов.Скачать

Синус, косинус, тангенс и котангенс углов от 0 до 180 градусов.

Синус, косинус произвольного угла. 9 класс.Скачать

Синус, косинус произвольного угла. 9 класс.

🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)Скачать

🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

9 класс. Геометрия. Тригонометрические функции угла от 0° до 180°. Единичная окружность. Урок #1Скачать

9 класс. Геометрия. Тригонометрические функции угла от 0° до 180°. Единичная окружность. Урок #1

9 класс, 9 урок, Синус, косинус, тангенс, котангенсСкачать

9 класс, 9 урок, Синус, косинус, тангенс, котангенс

Таблица значений тригонометрических функций - как её запомнить!!!Скачать

Таблица значений тригонометрических функций - как её запомнить!!!

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Синус, Косинус, Тангенс, Котангенс // Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Синус, Косинус, Тангенс, Котангенс // Подготовка к ЕГЭ по Математике

ТРИГОНОМЕТРИЧЕСКАЯ ОКРУЖНОСТЬСкачать

ТРИГОНОМЕТРИЧЕСКАЯ ОКРУЖНОСТЬ

Найдите значение тригонометрического выраженияСкачать

Найдите значение тригонометрического выражения

Тригонометрическая окружность с нуля + откуда берутся sin x и cos xСкачать

Тригонометрическая окружность с нуля + откуда берутся sin x и cos x
Поделиться или сохранить к себе: