Треугольник — простейший многоугольник, имеющий 3 вершины и 3 стороны; часть плоскости, ограниченная тремя точками, не лежащими на одной прямой, и тремя отрезками, попарно соединяющими эти точки.
Вершины треугольника обычно обозначаются заглавными латинскими буквами (A, B, C), величины углов при соответственных вершинах — греческими буквами ($$alpha, beta, gamma$$), а длины противоположных сторон — прописными латинскими буквами (a, b, c).
Правильный треугольник или равносторонний треугольник — правильный многоугольник с тремя сторонами. Все стороны равны между собой, и все углы равны 60° (или $$frac$$).
Пусть t — сторона правильного треугольника, R— радиус описанной окружности, r — радиус вписанной окружности.
Радиус вписанной окружности правильного треугольника, выраженный через его сторону $$r = frac<sqrt>cdot t$$.
Радиус описанной окружности правильного треугольника, выраженный через его сторону $$R = frac<sqrt>cdot t$$.
Видео:№932. Найдите координаты вершин равнобедренного треугольника ABC, изображенного на рисункеСкачать
Найти третью точку правильного треугольника?
Логика у вас правильная — взять середину отрезка AB и отложить от него перпендикуляр длинной sqrt(3)/2*d.
Но не надо искать углы, вектор перпендикуляр находится тривиально — это (Можно доказать перпендикулярность через скалярное произведение, например). Более того, длина этого вектора будет уже d (это ведь повернутый на 90 градусов вектор по стороне треугольника). Значит его остается тупо домножить на sqrt(3)/2.
Таким образом формула x3 = (x1+x2)/2 +sqrt(3)/2*(y2-y1).
Зная координаты точки 1(x1,y1) и координаты точки 2(x2,y2) найти третью точку(x3,y3) правильного треугольника со стороной d.
Безграмотная формулировка. Не точки, а вершины. d вообще лишнее.
Если A(x1,y1), B(x2,y2), то третья вершина C(x3,y3) находится поворотом вершины B вокруг A на 60 градусов по часовой и против часовой стрелки.
Видео:Вычисляем высоту через координаты вершин 1Скачать
Свойства равностороннего треугольника: теория и пример задачи
В данной статье мы рассмотрим определение и свойства равностороннего (правильного) треугольника. Также разберем пример решения задачи для закрепления теоретического материала.
Видео:Вычисляем угол через координаты вершинСкачать
Определение равностороннего треугольника
Равносторонним (или правильным) называется треугольник, в котором все стороны имеют одинаковую длину. Т.е. AB = BC = AC.
Примечание: правильный многоугольник – это выпуклый многоугольник, имеющий равные стороны и углы между ними.
Видео:Вычисление медианы, высоты и угла по координатам вершинСкачать
Свойства равностороннего треугольника
Свойство 1
В равностороннем треугольнике все углы равны 60°. Т.е. α = β = γ = 60°.
Свойство 2
В равностороннем треугольнике высота, проведенная к любой из сторон, одновременно является биссектрисой угла, из которого она проведена, а также медианой и серединным перпендикуляром.
CD – медиана, высота и серединный перпендикуляр к стороне AB, а также биссектриса угла ACB.
Свойство 3
В равностороннем треугольнике биссектрисы, медианы, высоты и серединные перпендикуляры, проведенные ко всем сторонам, пересекаются в одной точке.
Свойство 4
Центры вписанной и описанной вокруг равностороннего треугольника окружностей совпадают и находятся на пересечении медиан, высот, биссектрис и серединных перпендикуляров.
Свойство 5
Радиус описанной вокруг равностороннего треугольника окружности в 2 раза больше радиуса вписанной окружности.
R – радиус описанной окружности;
r – радиус вписанной окружности;
R = 2r.
Свойство 6
В равностороннем треугольнике, зная длину стороны (условно примем ее за “a”), можно вычислить:
1. Высоту/медиану/биссектрису:
2. Радиус вписанной окружности:
3. Радиус описанной окружности:
4. Периметр:
5. Площадь:
Видео:Высшая математика. 3 урок. Аналитическая геометрия. Вычисление площади треугольникаСкачать
Пример задачи
Дан равносторонний треугольник, сторона которого равна 7 см. Найдите радиус описанной вокруг и вписанной окружности, а также, высоту фигуры.
Решение Применим формулы, приведеные выше, для нахождения неизвестных величин:
🎥 Видео
НАЙДИТЕ ВЫСОТУ РАВНОСТОРОННЕГО ТРЕУГОЛЬНИКАСкачать