Конуса в изометрической проекции окружностей

Проекции геометрических тел с примерами и образцами выполнения

Содержание:

Формы деталей, встречающихся в технике, представляют собой сочетание различных геометрических тел или их частей.

Видео:конусСкачать

конус

Формы геометрических тел

Деталь любой формы можно представить как совокупность отдельных геометрических тел.

Для примера возьмем деталь (рис. 159. а) и проанализируем се форму. Мысленно разделив ее на отдельные элементы, получим следующие гео­метрические тела (рис. 159, б): 1 — усеченный прямой круговой конус с цилиндрическим отвер­стием, 2 — прямой круговой цилиндр, 3 — прямо­угольный параллелепипед, 4 — два прямоугольных параллелепипеда с цилиндрическими отверстия­ми, 5 — два полых полуцилиндра. Для выполне­ния комплексных чертежей необходимо усвоить методы проецирования отдельных геометрических тел, а также точек и линий, расположенных на поверхности этих тел.

Конуса в изометрической проекции окружностей

Геометрические тела, ограниченные плоскими многоугольниками, называются многогранниками (рис. 160, а). Эти многоугольники называются гранями, их пересечения — ребрами. Угол, образо­ванный гранями, сходящимися в одной точке — вершине, называется многогранным углом.

Тела вращения ограничены поверхностями, которые получаются в результате вращения ка­кой-либо линии вокруг неподвижной оси (рис. 160, б и в). Линия АВ, которая при своем движении образует поверхность, называется обра­зующей. Наиболее часто встречаются такие тела вращения, как цилиндр, конус, шар, тор.

Конуса в изометрической проекции окружностей

Видео:Аксонометрические Проекции Окружности #черчение #окружность #проекции #изометрияСкачать

Аксонометрические Проекции Окружности  #черчение #окружность #проекции #изометрия

Проекции призм

Построение проекций правильной прямой шес­тиугольной призмы (рис. 161) начинается с выпо­лнения ее горизонтальной проекции — правильно­го шестиугольника. Из вершин этого шестиуголь­ника провопят вертикальные линии связи и строят фронтальную проекцию нижнего основания при­змы. Эта проекция изображается отрезком гори­зонтальной прямой. От этой прямой вверх откла­дывают высоту призмы и строят фронтальную проекцию верхнего основания. Затем вычерчива­ют фронтальные проекции ребер — отрезки верти­кальных прямых, равные высоте призмы. Фрон­тальные проекции передних и задних ребер совпа­дают. Горизонтальные проекции боковых граней изображаются в виде отрезков прямых. Передняя боковая грань 1243 изображается на плоскости V без искажения, а на плоскости W— в виде прямой линии. Фронтальные и профильные проекции остальных боковых граней изображаются с иска­жением.

На чертеже оси х, у и z не показывают, что делает чертеж более простым.

Конуса в изометрической проекции окружностей

Несколько сложнее построение проекций на­клонной призмы.

Рассмотрим порядок построения проекций на­клонной шестиугольной призмы.

1. Призма, основание которой лежит на плос­кости Н, наклонена к этой плоскости под утлом α (рис. 162, а). Ребра призмы параллельны плоскос­ти V, т.е. являются фронталями.

Вначале выполняется построение горизонталь­ной проекции основания призмы, которое проеци­руется на плоскость Н без искажения (правиль­ный шестиугольник). Фронтальная проекция осно­вания представляет собой отрезок прямой, парал­лельной оси х.

Из точек 1‘, 2′, 3’ фронтальной проекции основания проводят прямые проекции ребер под углом α к оси х и на них откладывают действи­тельную длину бокового ребра призмы.

Строят фронтальную проекцию верхнего осно­вания призмы в виде отрезка прямой, равного и параллельного фронтальной проекции нижнего основания.

Из точек 1, 2, 3, 4. 5. 6 горизонтальной проек­ции нижнего основания проводят прямые — про­екции ребер — параллельно оси х и на них с по­мощью вертикальных линий связи находят шесть точек — горизонтальные проекции вершин верхне­го основания призмы.

2. Прямая правильная шестиугольная призма наклонена под углом α к плоскости Н. Основание призмы наклонено к плоскости Н под углом β (рис. 162, б).

В этом случае необходимо вначале построить фронтальную проекцию основания. Эта проекция представляет собой отрезок, равный расстоянию между параллельными сторонами шестиугольника. Если этот отрезок разделить пополам и из его середины провести линию связи, то на ней будут расположены точки 2 и 5 — горизонтальные про­екции вершин основания призмы. Расстояние между точками 2, 5 равно действительному рас­стоянию между вершинами основания призмы. Так как горизонтальные проекции сторон 16 и 34 представляют собой их действительные длины, то, воспользовавшись этим обстоятельством, мож­но построить полностью горизонтальную проек­цию основания.

Дальнейший процесс построения, показанный на рис. 162, б, аналогичен приведенному на рис. 162, а.

Конуса в изометрической проекции окружностей

На комплексных чертежах предметов часто приходится строить проекции линий и точек, расположенных на поверхности этих тел, имея только одну проекцию линии или точки. Рассмотрим решение такой задачи.

Дан комплексный чертеж четырехугольной пря­мой призмы и фронтальная проекция а’ точки А.

Прежде всего надо отыскать на комплексном чертеже две проекции грани, на которой располо­жена точка А. На комплексном чертеже видно (рис. 163, а), что точка А лежит на грани призмы 1265. Фронтальная проекция а’ точки А лежит на фронтальной проекции 1‘2’6’5‘ грани призмы. Горизонтальная проекция 1562 этой грани — отре­зок 56. На этом отрезке и находится горизонталь­ная проекция а точки А. Профильную проекцию призмы и точки А строят, применяя линии связи.

По имеющемуся комплексному чертежу призмы можно выполнить ее изометрическую проекцию по координатам вершин. Для этого вначале строят нижнее основание призмы (рис. 163, б), а затем вертикальные ребра и верхнее основание (рис. 163, в).

По координатам т и п точки А, взятым с ком­плексного чертежа, можно построить аксономет­рическую проекцию этой точки.

Конуса в изометрической проекции окружностей

Видео:Как начертить конус в объемеСкачать

Как начертить конус в объеме

Проекции пирамид

Построение проекций треугольной пирамиды начинается с построения основания, горизонталь­ная проекция которого представляет собой тре­угольник без искажения (рис. 164, а). фронталь­ная проекция основания — отрезок горизонталь­ной прямой.

Из горизонтальной проекции точки s (верши­ны. пирамиды) проводят вертикальную линию связи, на которой от оси х откладывают высоту пирамиды и получают фронтальную проекцию s’ вершины. Соединяя точку s’ с точками 1‘, 2′ и 3′, получают фронтальные проекции ребер пира­миды.

Горизонтальные проекции ребер получают, соединяя горизонтальную проекцию точки s с горизонтальными проекциями точек 1, 2 и 3.

Пусть, например, дана фронтальная проекция а’ точки А, расположенной на грани пирамиды 1s2, и требуется найти другую проекцию этой точки. Для решения этой задачи проведем через а’ произвольную вспомогательную прямую и продолжим ее до пересечения с фронтальными проекциями 1’s’ и 2’s’ ребер в точках п’ и т‘. Затем проведем из точек п’ и т‘ линии связи до пересечения с горизонтальными проекциями 1s и 2s этих ребер в точках п и т. Соединив п с т, получим горизонтальную проекцию вспомогательной прямой, на которой с помощью линии связи найдем искомую горизонтальную проекцию а точки А Профильную проекцию этой точки нахо­дят по линиям связи.

Другой способ решения задачи на построение проекции точки по заданной ее проекции показан на рис. 164, б. Дана четырехугольная правильная пирамида. Через заданную фронтальную проек­цию а’ точки А проводят вспомогательную пря­мую, проходящую через вершину пирамиды и расположенную на ее грани. Горизонтальную проекцию ns вспомогательной прямой находят с помощью линии связи. Искомая горизонтальная проекция а точки А находится на пересечении линии связи, проведенной из точки а’, с горизон­тальной проекцией ns вспомогательной прямой.

Фронтальная диметрическая проекция рассмат­риваемой пирамиды выполняется следующим образом (рис. 164, в).

Вначале строят основание, для чего по оси х откладывают длину диагонали 13, а по оси у — половину длины диагонали 24. Из точки О пере­сечения диагоналей проводят ось z и на ней от­кладывают высоту пирамиды. Вершину S соединя­ют с вершинами основания прямыми линиями — ребрами.

Фронтальную диметрическую проекцию точки А, расположенной на грани пирамиды, строят по координатам, которые берут с комплексного чер­тежа. От качала координат О по оси х отклады­вают координату xА, из се конца параллельно оси у — половину координаты yА и из конца этой ко­ординаты параллельно оси z — третью координату zА. Построение точки В, расположенной на ребре пирамиды, более простое. От точки О по оси х от­кладывают координату xB и из конца ее проводят прямую, параллельную оси z, до пересечения с ребром пирамиды в точке В.

Конуса в изометрической проекции окружностей

Видео:КАК НАРИСОВАТЬ КРУГ В ИЗОМЕТРИИ (ОВАЛ В ИЗОМЕТРИЧЕСКОЙ ПРОЕКЦИИ).Скачать

КАК НАРИСОВАТЬ КРУГ В ИЗОМЕТРИИ (ОВАЛ В ИЗОМЕТРИЧЕСКОЙ ПРОЕКЦИИ).

Проекции цилиндров

Боковая поверхность прямого кругового цилин­дра получается вращением отрезка АВ образую­щей вокруг оси, параллельной этому отрезку. На рис. 165, а представлена изометрическая проекция цилиндра.

Построение горизонтальной и фронтальной проекций цилиндра показано на рис. 165, б и в.

Построение начинают с изображения основания цилиндра, т.е. двух проекций окружности (рис. 165, б). Так как окружность расположена на плоскости Н, то она проецируется на эту плос­кость без искажения. Фронтальная проекция ок­ружности представляет собой отрезок горизон­тальной прямой линии, равный диаметру окруж­ности основания.

После построения основания на фронтальной проекции проводят две очерковые (крайние) обра­зующие и на них откладывают высоту цилиндра. Проводят отрезок горизонтальной прямой, кото­рый является фронтальной проекцией верхнего основания цилиндра (рис. 165, в).

Конуса в изометрической проекции окружностей

Определение недостающих проекции точек А и В, расположенных на поверхности цилиндра, по заданным фронтальным проекциям в данном слу­чае затруднений нс вызывает, так как вся горизонтальная проекция боковой поверхности цилиндра представляет собой окружность (рис. 166. а). Следовательно, горизонтальные проекции точек А и В можно найти, проводя из данных точек а’ и b вертикальные линии связи до их пересечения с окружностью в искомых точ­ках а и Ь.

Профильные проекции точек А и В строят так­же с помощью вертикальных и горизонтальных линий связи.

Изометрическую проекцию цилиндра вычерчи­вают, как показано на рис. 166, б.

В изометрии точки A и В строят по координа­там. Например, для построения точки В от начала координат О по оси х откладывают координату xB = n, а затем через ее конец проводят прямую, параллельную оси у, до пересечения с контуром основания в точке 1. Из этой точки параллельно оси x проводят прямую, на которой откладывают координату xB = h1 точки В.

Конуса в изометрической проекции окружностей

Видео:Часть 2. ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ. Блок 10. Конус. Урок 3. Сечение плоскостью под углом к основанию.Скачать

Часть 2. ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ. Блок 10. Конус. Урок 3. Сечение плоскостью под углом к основанию.

Проекции конусов

Нагляднее изображение прямого кругового ко­нуса показано на рис. 167, а. Боковая поверхность конуса получена вращением отрезка BS вокруг оси, пересекающей отрезок в точке S. Последова­тельность построения двух проекций конуса пока­зана на рис. 167, б и в. Сначала строят две проекции основания. Горизонтальная проекция основа­ния — окружность. Фронтальной проекцией будет отрезок горизонтальной прямой, равный диаметру этой окружности (рис. 167, б). На фронтальной проекции из середины основания восставляют перпендикуляр и на нем откладывают высоту конуса (рис. 167, в). Полученную фронтальную проекцию вершины конуса соединяют прямыми с концами фронтальной проекции основания и по­лучают фронтальную проекцию конуса.

Конуса в изометрической проекции окружностей

Если на поверхности конуса задана одна проек­ция точки А (например, фронтальная проекция на рис. 168, а). то две другие проекции этой точки определяют с помощью вспомогательных линий — образующей, расположенной на поверхности ко­нуса и проведенной через точку А, или окружнос­ти, расположенной в плоскости, параллельной основанию конуса.

В первом случае (рис 168. а) проводят фрон­тальную проекцию saf вспомогательной обра­зующей. Пользуясь вертикальной линией связи, проведенной из точки f, расположенной на фрон­тальной проекции окружности основания, находят горизонтальную проекцию sf этой образующей, на которой с помощью линии связи, проходящей через а’, находят искомую точку а.

Во втором случае (рис. 168. б) вспомогательной линией, проходящей через точку А, будет окруж­ность. расположенная на конической поверхности и параллельная плоскости Н. Фронтальная проек­ция этой окружности изображается в виде отрезка Ь’с’ горизонтальной прямой, величина которого равна диаметру вспомогательной окружности. Искомая горизонтальная проекция а точки А на­ходится на пересечении линии связи, опущенной из точки а’, с горизонтальной проекцией вспомо­гательной окружности.

Если заданная фронтальная проекция Ь’ точки В расположена на контурной (очерко­вой) образующей SK, то горизонтальная проекция точки находится без вспомогательных линий (рис. 168. б).

В изометрической проекции точку А, находя­щуюся на поверхности конуса, строят по трем координатам (рис. 168, в): xА = n, yА = m, zА = h. Эти координаты последовательно откладывают по направлениям, параллельным изометрическим осям. В рассматриваемом примере от точки О по оси х отложена координата xА = n; из конца ее параллельно оси у проведена прямая, на которой отложена координата yА = m; из конца отрезка, равного т, параллельно оси z проведена прямая, на которой отложена координата zА = h. В резуль­тате построений получим искомую точку А.

Конуса в изометрической проекции окружностей

Видео:Как начертить КОНУС С ВЫРЕЗОМ (чертеж + аксонометрия)Скачать

Как начертить КОНУС С ВЫРЕЗОМ (чертеж + аксонометрия)

Проекции шара

На рис. 169, а изображена половина шара, сферическая поверхность этого шара образована вращением четверти окружности АВ вокруг ради­уса АО.

Проекции этой фигуры приведены на рис. 169, б. Горизонтальная проекция — окруж­ность радиуса, равного радиусу сферы, а фрон­тальная — полуокружность того же радиуса.

Если точка А расположена на сферической поверхности (рис. 169, в), то вспомогательная линия Ь’с’, проведенная через эту точку параллельно горизонтальной плоскости проекций, прое­цируется на горизонтальную плоскость проекций окружностью. На горизонтальной проекции вспо­могательной окружности находят с помощью ли­нии связи искомую горизонтальную проекцию а точки А.

Величина диаметра вспомогательной окружнос­ти равна фронтальной проекции Ь’с’.

Конуса в изометрической проекции окружностей

Видео:2 2 3 построение изометрии окружностиСкачать

2 2 3  построение изометрии окружности

Проекции кольца и тора

Поверхность кругового кольца (рис. 170, а) образована вращением образующей окружности ABCD вокруг оси ОО1.

Тор — поверхность, образованная вращением части дуги окружности, являющейся образующей, вокруг оси ОО1, расположенной в плоскости этой окружности и не проходящей через ее центр.

Конуса в изометрической проекции окружностей

На рис. 171, а и б приведены два вида тора. В первом случае образующая дуга окружности радиуса R отстоит от оси вращения на расстоянии меньше радиуса R, а во втором случае — больше.

В обоих случаях фронтальные проекции тора представляют собой действительный вид двух образующих дуг окружности радиуса R, располо­женных симметрично относительно фронтальной проекции оси вращения. Профильными проекция­ми тора будут окружности.

Круговое кольцо (или открытый тор) имеет горизонтальную проекцию в виде двух концентри­ческих окружностей, разность радиусов которых равна толщине кольца или диаметру образующей окружности (рис. 170, б). Фронтальная проекция ограничивается справа и слева дугами полуокруж­ностей диаметра образующей окружности.

Конуса в изометрической проекции окружностей

В случае, когда точка А лежит на поверхности кругового кольца и дана одна се проекция, для нахождения второй проекции этой точки приме­няется вспомогательная окружность, проходящая через данную точку А и расположенная на повер­хности кольца в плоскости, перпендикулярной оси кольца (рис. 172).

Если задана фронтальная проекция а’ точки А, лежащей на поверхности кольца, то для нахожде­ния ее второй проекции (в данном случае — про­фильной) через а’ проводят фронтальную проек­цию вспомогательной окружности — отрезок вер­тикальной прямой линии bc‘. Затем строят про­фильную проекцию b«с» этой окружности и на ней, применяя линию связи, находят точку а“.

Если задана профильная проекция а» точки D, расположенной на поверхности этого кольца, то для нахождения фронтальной проекции точки D через d« проводят профильную проекцию вспомо­гательной окружности радиуса O«d“. Затем через верхнюю и нижнюю точки е» f« этой окружности проводят горизонтальные линии связи до пересечения с фронтальными проекциями образующей окружности радиуса r и получают точки e и f‘. Эти точки соединяют вертикальной прямой, кото­рая представляет собой фронтальную проекцию вспомогательной окружности (она будет невиди­ма). Проводя горизонтальную линию связи из точки d« до пересечения с прямой ef ‘, получаем искомую точку d‘.

Такие же приемы построения применимы и для точек, находящихся на поверхности тора.

Конуса в изометрической проекции окружностей

Видео:Изображение в изометрической проекции окружностей, вписанных в кубСкачать

Изображение в изометрической проекции окружностей, вписанных в куб

Комплексные чертежи группы геометрических тел и моделей

Для развития пространственного воображения полезно выполнять комплексные чертежи группы геометрических тел и несложных моделей с натуры.

Наглядное изображение группы геометрических тел показано на рис. 173, а. Построение комплек­сного чертежа этой группы геометрических тел следует начинать с горизонтальной проекции, так как основания цилиндра, конуса и шестигранной пирамиды проецируются на горизонтальную плос­кость проекции без искажений. С помощью вертикальных линий связи строят фронтальную проек­цию. Профильную проекцию строят с помощью вертикальных и горизонтальных линий связи (рис. 173, б).

Конуса в изометрической проекции окружностей

Чтобы перейти к более сложным моделям, не­обходимо усвоить построение простых комплек­сных чертежей. Проекции моделей следует распо­лагать таким образом, чтобы фронтальная проек­ция давала наиболее полное представление о фор­ме и размерах модели (рис. 174).

Конуса в изометрической проекции окружностей

Примеры и образцы решения задач:

Услуги по выполнению чертежей:

Присылайте задания в любое время дня и ночи в ➔ Конуса в изометрической проекции окружностей Конуса в изометрической проекции окружностей

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Видео:ПОСТРОЕНИЕ ОВАЛА │ КАК НАЧЕРТИТЬ ОВАЛ ПРИ ПОСТРОЕНИИ АКСОНОМЕТРИИ │ Урок #61Скачать

ПОСТРОЕНИЕ ОВАЛА │ КАК НАЧЕРТИТЬ ОВАЛ ПРИ ПОСТРОЕНИИ АКСОНОМЕТРИИ │ Урок #61

Проекции конусов

Наглядное изображение прямого кругового конуса показано на рисунке 176. Боковая поверхность конуса получается при вращении отрезка BS вокруг оси конуса по направляющей — окружности основания.

Конуса в изометрической проекции окружностей

Последовательность построения двух проекций конуса показана на рисунке 177, а и б. Сначала строят две проекции основания. Горизонтальная проекция основания — окружность. Фронтальной проекцией будет отрезок горизонтальной прямой, равный диаметру этой окружности (рисунок 177, а). На фронтальной проекции из середины основания восставляют перпендикуляр и на нем откладывают высоту конуса (рисунок 177, б). Полученную фронтальную проекцию вершины конуса соединяют прямыми с концами фронтальной проекции основания и получают фронтальную проекцию конуса.

Конуса в изометрической проекции окружностей

Если на поверхности конуса задана одна проекция точки А (например, фронтальная проекция на рисунке 178, а и б), то две другие проекции этой точки определяют с помощью вспомогательных линий — образующей, расположенной на поверхности конуса и проведенной через точку А, или окружности, расположенной в плоскости, параллельной основанию конуса.

Конуса в изометрической проекции окружностей

В первом случае (рисунок 178, а) проводят фронтальную проекцию S»A»F» вспомогательной образующей. Пользуясь вертикальной линией связи, проведенной из точки F», расположенной на фронтальной проекции окружности основания, находят горизонтальную проекцию S’F’ этой образующей, на которой при помощи линии связи, проходящей через А», находят искомую точку А’.

Во втором случае (рисунок 178, б) вспомогательной линией, проходящей через точку А, будет окружность, расположенная на конической поверхности и параллельная горизонтальной плоскости. Фронтальная проекция этой окружности изображается в виде отрезка В» С» горизонтальной прямой, величина которого равна диаметру вспомогательной окружности. Искомая горизонтальная проекция А’ точки А находится на пересечении линии связи, опущенной из точки А», с горизонтальной проекцией вспомогательной окружности.

Если заданная фронтальная проекция В» точки В расположена на контурной (очерковой) образующей SK, то горизонтальная проекция точки находится без вспомогательных линий.

В изометрической проекции точку А, находящуюся на поверхности конуса, строят по трем координатам (рисунок 179): хА = п, уА = = Эти координаты последовательно откладывают по направлениям, параллельным изометрическим осям. В рассматриваемом примере от точки О по оси х отложена координата хА = п; из конца ее параллельно оси у проведена прямая, на которой отложена координата уА = пг, из конца отрезка, равного т, параллельно оси Z проведена прямая, на которой отложена координата zA = h. В результате построений получим искомую точку А.

Видео:Как начертить овал. Эллипс вписанный в ромбСкачать

Как начертить овал. Эллипс вписанный в ромб

Помощь с отчетом по практике

Ортогональные проекции полного прямого кругового конуса.

Горизонтальная проекция полного прямого кругового конуса – круг (рис. 9, а), в который спроецировалась боковая поверхность конуса как видимая. Основание конуса при проецировании совпадет с проекцией боковой поверхности и будет невидимым.

Рис. 9, а. Рис. 9, б.

Фронтальная и профильные проекции конуса изобразятся как равнобедренные треугольники, нижние стороны которых являются проекциями основания конуса. При проецировании они совпадут с осями Ох и Оу, так как конус стоит на плоскости Н.

Две другие стороны треугольника (1’S’ и 2’S’) на фронтальной плоскости проекций будут проекциями крайних образующих конуса. На горизонтальной плоскости проекций проекции этих образующих совпадают с диаметром основания, параллельным оси Ох, на профильной плоскости проекций их проекции совпадают с осевой линией. Видимой будет образующая S1.

Две стороны треугольника (3″S» и 4″S») на профильной проекций представляют собой профильные проекции крайних образующих конуса. На горизонтальной плоскости проекций эти образующие при проецировании совпадают с диаметром основания, параллельным оси Оу, на фронтальной плоскости проекций проекции этих образующих совпадают с осью вращения. Видимой будет образующая S3.

Построение конуса в аксонометрии.

На рис. 9, б показано построение прямого кругового конуса в прямо-

угольной изометрической проекции. Построение начинают с проведения центровых линий основания параллельно – аксонометрическим осям Ох, Оу и оси вращения, параллельной оси Оz. На центровых линиях строят окружность основания, которая в изометрии изображается как эллипс. Для упрощения построения эллипс заменяют овалом. Затем от точки O1 по оси вращения (параллельной оси Оz) откладывают высоту конуса, взятую с фронтальной или профильной проекции. Точка S будет вершиной конуса. Вершину конуса соединяют касательными с основанием.

Построение точки, лежащей на поверхности конуса.

Точка, лежащая на боковой поверхности конуса, задана горизонтальной проекцией а, требуется построить ее фронтальную и профильную проекции. Для этого через горизонтальные проекции вершины S и точки А (s и а) проводят образующую до пересечения с основанием конуса (рис. 9, а – точка 5). Затем строят фронтальную проекцию этой образующей. С помощью линии проекционной связи определяют фронтальную проекцию 5′ точки 5. Соединив прямой точки s’ и 5′, получают фронтальную проекцию образующей, на которой лежит точка А. С горизонтальной проекции проводят линию проекционной связи до пересечения с построенной образующей. Точка пересечения будет фронтальной проекцией а’ точки А. Профильную проекцию а» точки А строят с помощью линий проекционной связи, проведенных с горизонтальной и фронтальной проекции.

Точка В, лежащая на боковой поверхности конуса, задана фронтальной проекцией b’ как невидимая (рис. 9, а), требуется построить ее горизонтальную и профильную проекции. В данном случае для построения проекций точки В используют вспомогательную окружность (параллель), проходящую через точку В. На фронтальной проекции эта окружность изобразится отрезком, заключенным между крайними образующими, и будет проходить через фронтальную проекцию b’ точки В. Построим горизонтальную проекцию этой окружности. Радиусом, равным расстоянию от оси вращения (на фронтальной проекции) до крайней образующей, измеренному по отрезку, который проходит через точку b’, проведем окружность на горизонтальной проекции. Опустив на эту окружность линию связи из точки b’, получим две точки пересечения. Так как точка В на фронтальной проекции задана невидимой, на горизонтальной проекции ее проекция находится выше диаметра 1 2, т. е. на той части конуса, которая на фронтальной проекции невидимая.

На горизонтальной плоскости проекций точка В будет видимой, т. к. при проецировании конуса на горизонтальную плоскость проекций боковая поверхность будет видимой.

Профильную проекцию b» точки В, строят с помощью линий проекционной связи, проведенных с горизонтальной и фронтальной проекции. Здесь она будет видимой, так как лежит в левой части горизонтальной проекции конуса, а эта часть конуса на профильной проекции видимая.

Построение точек А и В в изометрической проекции (рис. 9, б) выполняют в следующей последовательности: строят вторичные горизонтальные проекции этих точек, и от них параллельно оси Оz откладывают расстояния, взятые с фронтальной или профильной проекции, от основания конуса до проекций этих точек.

Комплексные чертежи отличаются большой точностью в передаче формы предмета, удобны для измерения и решения различных геометрических задач. Однако они имеют существенный недостаток, заключающийся в отсутствии наглядности, поэтому по отдельным проекциям приходится мысленно представлять форму предмета.

Во многих случаях при выполнении технических чертежей оказывается необходимым, наряду с изображением предметов в системе ортогональных проекций, иметь изображения более наглядные. Для построения таких изображений применяются проекции, называемые аксонометрическими.

Наглядными изображениями сопровождаются чертежи изделий, отправляемых на экспорт, проекты газовых сетей, систем трубопроводов химических предприятий, чертежи конструкций зданий и их элементов и т.д.

В настоящих методических указаниях приведены основные понятия аксонометрического метода построения проекций, кратко представлены стандартные прямоугольные и косоугольные аксонометрические проекции, рассмотрен порядок выбора типа проекции и ее построения.

📺 Видео

2 3 проекция точки на конусеСкачать

2 3 проекция точки на конусе

Задание 42. УСЕЧЕННЫЙ КОНУС. Часть 1Скачать

Задание 42. УСЕЧЕННЫЙ КОНУС. Часть 1

Как начертить конус в Изометрической проекции?Скачать

Как начертить конус в Изометрической проекции?

Как начертить овал в горизонтальной плоскостиСкачать

Как начертить овал в горизонтальной плоскости

конус с отверстиемСкачать

конус с отверстием

Задание 42. УСЕЧЕННЫЙ КОНУС. Часть 2Скачать

Задание 42. УСЕЧЕННЫЙ КОНУС. Часть 2

Часть 1. Изометрическая проекция. (стр. 29)Скачать

Часть 1. Изометрическая проекция. (стр. 29)

2 3 чертеж и изометрия конусаСкачать

2 3 чертеж и изометрия конуса

Построение проекций точек на поверхности конуса #черчение #проекции #конус #преподавательСкачать

Построение проекций точек на поверхности конуса #черчение #проекции #конус #преподаватель

Виды и изометрия конусаСкачать

Виды и изометрия конуса
Поделиться или сохранить к себе: