Пример 1. Вырез на конусе (рис.142).
Рис.142
Вырез произведен двумя плоскостями. Одна проходит через вершину конуса и рассечет его поверхность по образующим. Вторая плоскость – фронтально-проецирующая, линия пересечения – часть эллипса, ограниченная прямой принадлежащей линии пересечения плоскостей.
1. Отметим фронтальные проекции характерных точек для построения выреза – А”, В”, С”, M»,N» (рис. 143).
2. Точки D и Е выбраны произвольно для построения эллипса, т.к. линия среза от А до СN представляет собой часть эллипса.
3. Найдем горизонтальные проекции точек А, В, С, D, Е, N. Точки лежат на поверхности конуса, а значит, они лежат на линиях, принадлежащих поверхности конуса. Горизонтальные проекции точек М и В, D и E найдены на окружностях, принадлежащих поверхности конуса. Точки С и N – на образующих S1 и S2.
4. Соединяем полученные горизонтальные проекции. S’С’ и S’N‘ – прямые, C’, B’, D’, A’, E’, M’, N’ – кривая линия – часть эллипса (рис. 142).
Рис.143 Рис.144
Строим профильную проекцию конуса и профильные проекции точек. Соединяем их (рис.145).
Пример 2. Вырез на цилиндре (рис.146).
Вырез произведен тремя плоскостями. Наклонные фронтально-проецирующие плоскости рассекут цилиндр по части эллипса, ограниченного прямой. Плоскость, параллельная оси вращения, пересекает поверхность цилиндра по образующим.
1. Отметим на фронтальной проекции выреза фронтальные проекции A»,F»,G»,K»,L»,P». Характерные точки D»,E» ,M»,N» – на оси симметрии цилиндра, B»,C»,T»,V » – отмечены произвольно на линии, принадлежащей поверхности цилиндра. Все точки принадлежат боковой поверхности цилиндра, которая проецируется в окружность на горизонтальной плоскости проекций. Поэтому все горизонтальные проекции точек принадлежат этой окружности (рис.147).
Рис.147
Найдем профильные проекции всех точек. Затем полученные точки соединяем. Линия GECABDF – часть эллипса, FK и GL отрезки прямых, GF и KL-отрезки прямых, LNVPTMK – часть эллипса (рис. 148).
Рис.148
Пример 3. Вырез на призме (рис.149).
Рис.149 Hbc
Пример 4. Вырез на пирамиде (рис.150).
Пример 5. Вырез на сфере (рис. 151
p>
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 9122 – | 7289 – или читать все.
91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock!
и обновите страницу (F5)
очень нужно
- Пошаговое руководство решения задачи №6 — построение линии пересечения сферической поверхности от сквозного призматического выреза.
- Черчение. Проецирование геометрического тела с отверстием на чертеже
- Проекции геометрических тел с примерами и образцами выполнения
- Формы геометрических тел
- Проекции призм
- Проекции пирамид
- Проекции цилиндров
- Проекции конусов
- Проекции шара
- Проекции кольца и тора
- Комплексные чертежи группы геометрических тел и моделей
- 🎬 Видео
Видео:Как начертить КОНУС С ВЫРЕЗОМ (чертеж + аксонометрия)Скачать
Пошаговое руководство решения задачи №6 — построение линии пересечения сферической поверхности от сквозного призматического выреза.
Необходимо построить линию пересечения сферической поверхности (шара) от сквозного призматического выреза, состоящего из четырех граней (проецирующих плоскостей). Фронтальная проекция линии пересечения заданных поверхностей (шара и многогранника) задана исходным чертежом, требуется построить ее в горизонтальную и профильную проекции.
Для решения такой задачи по начертательной геометрии необходимо знать:
— построение трех проекций сферической поверхности (шара) по заданным координатам, на комплексном чертеже;
— построение линии пересечения шаровой поверхности с гранным телом;
— частные случаи построения линии пересечения шаровой поверхности с проецирующей плоскостью.
Порядок решения Задачи
Рис.6.1
1. В правой части листа формата A3 наносятся оси координат и согласно варианту задания строится фронтальная, горизонтальная и профильная проекции сферы (шара) заданного радиуса.
По координатам точек, взятым из таблицы по своему варианту, наносятся вершины сквозного четырехгранного выреза во фронтальной проекции (рис.6.1).
2. Решение задачи заключается в построении горизонтальной и профильной проекции линии пересечения данного выреза.
Прежде чем приступить к построению этих проекций, необходимо вспомнить некоторые частные случаи сечений шаровой поверхности от проецирующей плоскости (сквозное отверстие можно рассматривать как гранное тело, образованное четырьмя плоскостями), а именно:
(а) если плоскость во фронтальной проекции рассекает шаровую поверхность параллельно экватору, то в горизонтальной проекции это сечение проецируется в виде окружности с радиусом, взятым в этом сечении от оси вращения шара до очерка, а в профильной проекции это сечение проецируется в виде прямой линии;
(b) если плоскость во фронтальной проекции рассекает шаровую поверхность перпендикулярно экватору, то в горизонтальной проекции это сечение проецируется в виде прямой линии, а в профильной — в виде окружности с радиусом, взятым тем же способом что и в первом случае;
(c) если плоскость во фронтальной проекции рассекает шаровую поверхность под некоторым (отличным от 0 и 90 градусов) углом к экватору, то в горизонтальной и фронтальной проекциях это сечение будет проецироваться в виде эллипса. Построение эллипса осуществляется по опорным (характерным) и некоторым промежуточным, взятым произвольно, точкам;
(d) все точки фронтальной проекции сферы, расположенные на очерке, в горизонтальной проекции будут проецироваться на экваторе, а в профильной — на главном меридиане;
(e) все точки фронтальной проекции сферы, расположенные на экваторе, в горизонтальной проекции будут проецироваться на очерке, а в профильной — на экваторе;
(f) все точки фронтальной проекции сферы, расположенные на главном меридиане, в горизонтальной проекции будут проецироваться также на главном меридиане, а в профильной — на очерке сферы.
Рис.6.2
3. С учетом приведенных частных случаев сечений построение выреза в горизонтальной и профильной проекциях не вызывает особых затруднений и начинается с определения характерных (опорных) точек сквозного выреза во фронтальной проекции. Этими точками являются А, В, С, D. Тогда берем проекцию стороны призмы B’C’ и рассматриваем ее как проецирующую плоскость ’, рассекающую шар параллельно экватору, — строим в горизонтальной проекции окружность с радиусом r1 взятым в этой плоскости, от оси шара до очерка. Проецируем на эту окружность точки B’ и C’, получаем B и C — их горизонтальные проекции. Вполне очевидно, что этих точек будет по две (точки входа и выхода), т.к. отверстие сквозное.
Аналогичным способом строится проекция сечения плоскости А’D’. Берется радиус от оси сферы до очерка (разумеется не до точки A’) и в горизонтальной проекции проводится окружность этим радиусом. Проецированием находятся проекции точек D (их будет две — точка входа и точка выхода) — D и D1 и промежуточной точки, расположенной на экваторе.
Рис.6.3
Сторона четырехугольника СD горизонтальной проекции проецируется в прямую линию, причем эта линия должна начинаться от очерка, т.к. во фронтальной проекции
она пересекает экватор шара и продолжается до точек С и D.
Рис.6.4
Горизонтальной проекцией сторон четырехугольника АВ будет эллипс, строим его по характерным (опорным) точкам. Проецируем точки, расположенные на меридиане, экваторе и очерке фронтальной проекции соответственно на меридиан, очерк и экватор горизонтальной проекции. Соединяя их по лекалу с уже имеющимися
проекциями точек B и B1, и получаем искомую проекцию эллипса.
4. Аналогичным способом строится третья профильная проекция данного выреза (вид слева), поэтому нет надобности в подробном изложении четырехугольника ВС и АD будут проецироваться в прямые линии, СD – в окружность, AB – в эллипс.
Рис.6.5
5. Заключительным этапом в решении задачи является определение видимости сторон сквозного выреза, которая определяется из расположения их на сопряженной плоскости проекций. Тогда видимыми точками и линиями в горизонтальной плоскости будут точки и линии, которые во фронтальной — расположены выше экватора и на профильной проекции видимыми будут точки и линии которые на фронтальной плоскости расположены левее меридианы.
Экватор и меридиан являются границами видимости. Точки и линии, расположенные ниже экватора и правее меридиана во фронтальной проекции, в горизонтальной и профильной проекциях будут невидимыми.
Пример 1. Построить три проекции цилиндра с вырезом (рис. 147).
Отмечаем характерные точки выреза А, В, С, Д, Е, F, а также произвольную точку к для построения профильной проекции части эллипса. Горизонтальные проекции точек отмечаем на горизонтальном очерке цилиндра, так как горизонтальная проекция боковой поверхности цилиндра совпадает с горизонтальным очерком (рис .148)
Построение профильной проекции выреза показано на рис. 149. Для этого целесообразно ось x 12 провести через ось симметрии горизонтальной проекции,а ось x 23 через профильную ось симметрии.
Пример 2. Построить три проекции конуса с вырезом (рис. 150).
Отмечаем характерные точки вареза А, В, С, Е, K, а также произвольную точку D для построения части эллипса. Горизонтальные проекции точек отмечаем на образующих конуса и вспомогательных окружностях (рис. 151).
На рис. 152 показано построение профильной проекции конуса с вырезом.Для этого целесообразно ось x 12 провести через ось симметрии горизонтальной проекции, а ось x 23 через профильную ось симметрии.
Пример 3. Построить три проекции вырезе на призме (рис. 153).
Решение показано на рис. 154
Пример 4. Построить три проекции выреза на пирамиде (рис. 155).
Отмечаем фронтальные проекции характерных точек выреза – это точки 12, 22, 32, 42, 52, 62. Для нахождения горизонтальных проекций точек 4 и 5 проводим по поверхности пирамиды две вспомогательные линии, параллельные основанию пирамиды ABC. Горизонтальные проекции этих линий являются треугольниками, параллельными горизонтальной проекции основания А1В1С1. На этих треугольниках отмечаем горизонтальные проекции точек 4 и 5 (рис. 156).
Затем строим профильную проекцию пирамиды и точек выреза. Для этого оси целесообразно провести как показано на рис. 157.
Пример 5. Построить три проекции выреза на сфере (рис. 158).
Вырез образован двумя фронтально-проецирующими плоскостями α и τ, горизонтальной плоскостью φ, двумя профильными плоскостями β и γ. Горизонтальная плоскость пересекает поверхность сферы по части окружности, ограниченной прямой. Фронтально-проецирующая плоскость пересекают поверхность сферы по окрухностям, которые на горизонтальной и профильной плоскости проецируются как части эллипсов. Профильная плоскость пересечет поверхность сферы по части окружности, которая на профильной плоскости спроецируется как часть окружности (рис. 159).
Построение профильной проекции показано на рис. 160
Метрические задачи
Дата добавления: 2018-10-15 ; просмотров: 1914 | Нарушение авторских прав
Видео:конус с отверстиемСкачать
Черчение. Проецирование геометрического тела с отверстием на чертеже
В этот раз хочется повести речь, о чуть более сложных моделях, и их изображении на чертежах. В качестве примера рассмотрим сквозное отверстие в призматической фигуре, и подробно распишем последовательность построение этого отверстия в трех основных проекциях.
Первое, с чего стоит начинать чертеж модели – это конечно построение осевой линии. Это вертикальная или горизонтальная штрихпунктирная линия, идущая вдоль оси тела, которая в нашем случае является осью симметрии. Затем приступаем к построению контура фигуры и первым делом рисуем главный вид (рисунок 1) с которого в дальнейшем нарисуем два других вида модели. Для того, чтобы правильно вычертить отверстие на трех проекциях, используют проекционные связи. Т.е. если у вас есть отверстие на одном из видов, например, на главном, зная несколько простых правил, вы сможете вычертить это отверстие и на других двух видах.
Видео:Конус с вырезомСкачать
Проекции геометрических тел с примерами и образцами выполнения
Содержание:
Формы деталей, встречающихся в технике, представляют собой сочетание различных геометрических тел или их частей.
Видео:Конус. 11 класс.Скачать
Формы геометрических тел
Деталь любой формы можно представить как совокупность отдельных геометрических тел.
Для примера возьмем деталь (рис. 159. а) и проанализируем се форму. Мысленно разделив ее на отдельные элементы, получим следующие геометрические тела (рис. 159, б): 1 — усеченный прямой круговой конус с цилиндрическим отверстием, 2 — прямой круговой цилиндр, 3 — прямоугольный параллелепипед, 4 — два прямоугольных параллелепипеда с цилиндрическими отверстиями, 5 — два полых полуцилиндра. Для выполнения комплексных чертежей необходимо усвоить методы проецирования отдельных геометрических тел, а также точек и линий, расположенных на поверхности этих тел.
Геометрические тела, ограниченные плоскими многоугольниками, называются многогранниками (рис. 160, а). Эти многоугольники называются гранями, их пересечения — ребрами. Угол, образованный гранями, сходящимися в одной точке — вершине, называется многогранным углом.
Тела вращения ограничены поверхностями, которые получаются в результате вращения какой-либо линии вокруг неподвижной оси (рис. 160, б и в). Линия АВ, которая при своем движении образует поверхность, называется образующей. Наиболее часто встречаются такие тела вращения, как цилиндр, конус, шар, тор.
Видео:Простой расчёт развёртки конусаСкачать
Проекции призм
Построение проекций правильной прямой шестиугольной призмы (рис. 161) начинается с выполнения ее горизонтальной проекции — правильного шестиугольника. Из вершин этого шестиугольника провопят вертикальные линии связи и строят фронтальную проекцию нижнего основания призмы. Эта проекция изображается отрезком горизонтальной прямой. От этой прямой вверх откладывают высоту призмы и строят фронтальную проекцию верхнего основания. Затем вычерчивают фронтальные проекции ребер — отрезки вертикальных прямых, равные высоте призмы. Фронтальные проекции передних и задних ребер совпадают. Горизонтальные проекции боковых граней изображаются в виде отрезков прямых. Передняя боковая грань 1243 изображается на плоскости V без искажения, а на плоскости W— в виде прямой линии. Фронтальные и профильные проекции остальных боковых граней изображаются с искажением.
На чертеже оси х, у и z не показывают, что делает чертеж более простым.
Несколько сложнее построение проекций наклонной призмы.
Рассмотрим порядок построения проекций наклонной шестиугольной призмы.
1. Призма, основание которой лежит на плоскости Н, наклонена к этой плоскости под утлом α (рис. 162, а). Ребра призмы параллельны плоскости V, т.е. являются фронталями.
Вначале выполняется построение горизонтальной проекции основания призмы, которое проецируется на плоскость Н без искажения (правильный шестиугольник). Фронтальная проекция основания представляет собой отрезок прямой, параллельной оси х.
Из точек 1‘, 2′, 3’ фронтальной проекции основания проводят прямые проекции ребер под углом α к оси х и на них откладывают действительную длину бокового ребра призмы.
Строят фронтальную проекцию верхнего основания призмы в виде отрезка прямой, равного и параллельного фронтальной проекции нижнего основания.
Из точек 1, 2, 3, 4. 5. 6 горизонтальной проекции нижнего основания проводят прямые — проекции ребер — параллельно оси х и на них с помощью вертикальных линий связи находят шесть точек — горизонтальные проекции вершин верхнего основания призмы.
2. Прямая правильная шестиугольная призма наклонена под углом α к плоскости Н. Основание призмы наклонено к плоскости Н под углом β (рис. 162, б).
В этом случае необходимо вначале построить фронтальную проекцию основания. Эта проекция представляет собой отрезок, равный расстоянию между параллельными сторонами шестиугольника. Если этот отрезок разделить пополам и из его середины провести линию связи, то на ней будут расположены точки 2 и 5 — горизонтальные проекции вершин основания призмы. Расстояние между точками 2, 5 равно действительному расстоянию между вершинами основания призмы. Так как горизонтальные проекции сторон 16 и 34 представляют собой их действительные длины, то, воспользовавшись этим обстоятельством, можно построить полностью горизонтальную проекцию основания.
Дальнейший процесс построения, показанный на рис. 162, б, аналогичен приведенному на рис. 162, а.
На комплексных чертежах предметов часто приходится строить проекции линий и точек, расположенных на поверхности этих тел, имея только одну проекцию линии или точки. Рассмотрим решение такой задачи.
Дан комплексный чертеж четырехугольной прямой призмы и фронтальная проекция а’ точки А.
Прежде всего надо отыскать на комплексном чертеже две проекции грани, на которой расположена точка А. На комплексном чертеже видно (рис. 163, а), что точка А лежит на грани призмы 1265. Фронтальная проекция а’ точки А лежит на фронтальной проекции 1‘2’6’5‘ грани призмы. Горизонтальная проекция 1562 этой грани — отрезок 56. На этом отрезке и находится горизонтальная проекция а точки А. Профильную проекцию призмы и точки А строят, применяя линии связи.
По имеющемуся комплексному чертежу призмы можно выполнить ее изометрическую проекцию по координатам вершин. Для этого вначале строят нижнее основание призмы (рис. 163, б), а затем вертикальные ребра и верхнее основание (рис. 163, в).
По координатам т и п точки А, взятым с комплексного чертежа, можно построить аксонометрическую проекцию этой точки.
Видео:Конус путем вращения треугольникаСкачать
Проекции пирамид
Построение проекций треугольной пирамиды начинается с построения основания, горизонтальная проекция которого представляет собой треугольник без искажения (рис. 164, а). фронтальная проекция основания — отрезок горизонтальной прямой.
Из горизонтальной проекции точки s (вершины. пирамиды) проводят вертикальную линию связи, на которой от оси х откладывают высоту пирамиды и получают фронтальную проекцию s’ вершины. Соединяя точку s’ с точками 1‘, 2′ и 3′, получают фронтальные проекции ребер пирамиды.
Горизонтальные проекции ребер получают, соединяя горизонтальную проекцию точки s с горизонтальными проекциями точек 1, 2 и 3.
Пусть, например, дана фронтальная проекция а’ точки А, расположенной на грани пирамиды 1s2, и требуется найти другую проекцию этой точки. Для решения этой задачи проведем через а’ произвольную вспомогательную прямую и продолжим ее до пересечения с фронтальными проекциями 1’s’ и 2’s’ ребер в точках п’ и т‘. Затем проведем из точек п’ и т‘ линии связи до пересечения с горизонтальными проекциями 1s и 2s этих ребер в точках п и т. Соединив п с т, получим горизонтальную проекцию вспомогательной прямой, на которой с помощью линии связи найдем искомую горизонтальную проекцию а точки А Профильную проекцию этой точки находят по линиям связи.
Другой способ решения задачи на построение проекции точки по заданной ее проекции показан на рис. 164, б. Дана четырехугольная правильная пирамида. Через заданную фронтальную проекцию а’ точки А проводят вспомогательную прямую, проходящую через вершину пирамиды и расположенную на ее грани. Горизонтальную проекцию ns вспомогательной прямой находят с помощью линии связи. Искомая горизонтальная проекция а точки А находится на пересечении линии связи, проведенной из точки а’, с горизонтальной проекцией ns вспомогательной прямой.
Фронтальная диметрическая проекция рассматриваемой пирамиды выполняется следующим образом (рис. 164, в).
Вначале строят основание, для чего по оси х откладывают длину диагонали 13, а по оси у — половину длины диагонали 24. Из точки О пересечения диагоналей проводят ось z и на ней откладывают высоту пирамиды. Вершину S соединяют с вершинами основания прямыми линиями — ребрами.
Фронтальную диметрическую проекцию точки А, расположенной на грани пирамиды, строят по координатам, которые берут с комплексного чертежа. От качала координат О по оси х откладывают координату xА, из се конца параллельно оси у — половину координаты yА и из конца этой координаты параллельно оси z — третью координату zА. Построение точки В, расположенной на ребре пирамиды, более простое. От точки О по оси х откладывают координату xB и из конца ее проводят прямую, параллельную оси z, до пересечения с ребром пирамиды в точке В.
Видео:РГР №2. Поверхность вращения с призматическим отверстием (лектор Зиганшина Файруза Тахваловна)Скачать
Проекции цилиндров
Боковая поверхность прямого кругового цилиндра получается вращением отрезка АВ образующей вокруг оси, параллельной этому отрезку. На рис. 165, а представлена изометрическая проекция цилиндра.
Построение горизонтальной и фронтальной проекций цилиндра показано на рис. 165, б и в.
Построение начинают с изображения основания цилиндра, т.е. двух проекций окружности (рис. 165, б). Так как окружность расположена на плоскости Н, то она проецируется на эту плоскость без искажения. Фронтальная проекция окружности представляет собой отрезок горизонтальной прямой линии, равный диаметру окружности основания.
После построения основания на фронтальной проекции проводят две очерковые (крайние) образующие и на них откладывают высоту цилиндра. Проводят отрезок горизонтальной прямой, который является фронтальной проекцией верхнего основания цилиндра (рис. 165, в).
Определение недостающих проекции точек А и В, расположенных на поверхности цилиндра, по заданным фронтальным проекциям в данном случае затруднений нс вызывает, так как вся горизонтальная проекция боковой поверхности цилиндра представляет собой окружность (рис. 166. а). Следовательно, горизонтальные проекции точек А и В можно найти, проводя из данных точек а’ и b‘ вертикальные линии связи до их пересечения с окружностью в искомых точках а и Ь.
Профильные проекции точек А и В строят также с помощью вертикальных и горизонтальных линий связи.
Изометрическую проекцию цилиндра вычерчивают, как показано на рис. 166, б.
В изометрии точки A и В строят по координатам. Например, для построения точки В от начала координат О по оси х откладывают координату xB = n, а затем через ее конец проводят прямую, параллельную оси у, до пересечения с контуром основания в точке 1. Из этой точки параллельно оси x проводят прямую, на которой откладывают координату xB = h1 точки В.
Видео:развертка конусаСкачать
Проекции конусов
Нагляднее изображение прямого кругового конуса показано на рис. 167, а. Боковая поверхность конуса получена вращением отрезка BS вокруг оси, пересекающей отрезок в точке S. Последовательность построения двух проекций конуса показана на рис. 167, б и в. Сначала строят две проекции основания. Горизонтальная проекция основания — окружность. Фронтальной проекцией будет отрезок горизонтальной прямой, равный диаметру этой окружности (рис. 167, б). На фронтальной проекции из середины основания восставляют перпендикуляр и на нем откладывают высоту конуса (рис. 167, в). Полученную фронтальную проекцию вершины конуса соединяют прямыми с концами фронтальной проекции основания и получают фронтальную проекцию конуса.
Если на поверхности конуса задана одна проекция точки А (например, фронтальная проекция на рис. 168, а). то две другие проекции этой точки определяют с помощью вспомогательных линий — образующей, расположенной на поверхности конуса и проведенной через точку А, или окружности, расположенной в плоскости, параллельной основанию конуса.
В первом случае (рис 168. а) проводят фронтальную проекцию s’a‘f ’ вспомогательной образующей. Пользуясь вертикальной линией связи, проведенной из точки f, расположенной на фронтальной проекции окружности основания, находят горизонтальную проекцию sf этой образующей, на которой с помощью линии связи, проходящей через а’, находят искомую точку а.
Во втором случае (рис. 168. б) вспомогательной линией, проходящей через точку А, будет окружность. расположенная на конической поверхности и параллельная плоскости Н. Фронтальная проекция этой окружности изображается в виде отрезка Ь’с’ горизонтальной прямой, величина которого равна диаметру вспомогательной окружности. Искомая горизонтальная проекция а точки А находится на пересечении линии связи, опущенной из точки а’, с горизонтальной проекцией вспомогательной окружности.
Если заданная фронтальная проекция Ь’ точки В расположена на контурной (очерковой) образующей SK, то горизонтальная проекция точки находится без вспомогательных линий (рис. 168. б).
В изометрической проекции точку А, находящуюся на поверхности конуса, строят по трем координатам (рис. 168, в): xА = n, yА = m, zА = h. Эти координаты последовательно откладывают по направлениям, параллельным изометрическим осям. В рассматриваемом примере от точки О по оси х отложена координата xА = n; из конца ее параллельно оси у проведена прямая, на которой отложена координата yА = m; из конца отрезка, равного т, параллельно оси z проведена прямая, на которой отложена координата zА = h. В результате построений получим искомую точку А.
Видео:Построение конуса с вырезомСкачать
Проекции шара
На рис. 169, а изображена половина шара, сферическая поверхность этого шара образована вращением четверти окружности АВ вокруг радиуса АО.
Проекции этой фигуры приведены на рис. 169, б. Горизонтальная проекция — окружность радиуса, равного радиусу сферы, а фронтальная — полуокружность того же радиуса.
Если точка А расположена на сферической поверхности (рис. 169, в), то вспомогательная линия Ь’с’, проведенная через эту точку параллельно горизонтальной плоскости проекций, проецируется на горизонтальную плоскость проекций окружностью. На горизонтальной проекции вспомогательной окружности находят с помощью линии связи искомую горизонтальную проекцию а точки А.
Величина диаметра вспомогательной окружности равна фронтальной проекции Ь’с’.
Видео:Построение недостающих проекции сквозного отверстия в сфереСкачать
Проекции кольца и тора
Поверхность кругового кольца (рис. 170, а) образована вращением образующей окружности ABCD вокруг оси ОО1.
Тор — поверхность, образованная вращением части дуги окружности, являющейся образующей, вокруг оси ОО1, расположенной в плоскости этой окружности и не проходящей через ее центр.
На рис. 171, а и б приведены два вида тора. В первом случае образующая дуга окружности радиуса R отстоит от оси вращения на расстоянии меньше радиуса R, а во втором случае — больше.
В обоих случаях фронтальные проекции тора представляют собой действительный вид двух образующих дуг окружности радиуса R, расположенных симметрично относительно фронтальной проекции оси вращения. Профильными проекциями тора будут окружности.
Круговое кольцо (или открытый тор) имеет горизонтальную проекцию в виде двух концентрических окружностей, разность радиусов которых равна толщине кольца или диаметру образующей окружности (рис. 170, б). Фронтальная проекция ограничивается справа и слева дугами полуокружностей диаметра образующей окружности.
В случае, когда точка А лежит на поверхности кругового кольца и дана одна се проекция, для нахождения второй проекции этой точки применяется вспомогательная окружность, проходящая через данную точку А и расположенная на поверхности кольца в плоскости, перпендикулярной оси кольца (рис. 172).
Если задана фронтальная проекция а’ точки А, лежащей на поверхности кольца, то для нахождения ее второй проекции (в данном случае — профильной) через а’ проводят фронтальную проекцию вспомогательной окружности — отрезок вертикальной прямой линии b‘c‘. Затем строят профильную проекцию b«с» этой окружности и на ней, применяя линию связи, находят точку а“.
Если задана профильная проекция а» точки D, расположенной на поверхности этого кольца, то для нахождения фронтальной проекции точки D через d« проводят профильную проекцию вспомогательной окружности радиуса O«d“. Затем через верхнюю и нижнюю точки е» f« этой окружности проводят горизонтальные линии связи до пересечения с фронтальными проекциями образующей окружности радиуса r и получают точки e‘ и f‘. Эти точки соединяют вертикальной прямой, которая представляет собой фронтальную проекцию вспомогательной окружности (она будет невидима). Проводя горизонтальную линию связи из точки d« до пересечения с прямой e‘f ‘, получаем искомую точку d‘.
Такие же приемы построения применимы и для точек, находящихся на поверхности тора.
Видео:Построение конуса с вырезомСкачать
Комплексные чертежи группы геометрических тел и моделей
Для развития пространственного воображения полезно выполнять комплексные чертежи группы геометрических тел и несложных моделей с натуры.
Наглядное изображение группы геометрических тел показано на рис. 173, а. Построение комплексного чертежа этой группы геометрических тел следует начинать с горизонтальной проекции, так как основания цилиндра, конуса и шестигранной пирамиды проецируются на горизонтальную плоскость проекции без искажений. С помощью вертикальных линий связи строят фронтальную проекцию. Профильную проекцию строят с помощью вертикальных и горизонтальных линий связи (рис. 173, б).
Чтобы перейти к более сложным моделям, необходимо усвоить построение простых комплексных чертежей. Проекции моделей следует располагать таким образом, чтобы фронтальная проекция давала наиболее полное представление о форме и размерах модели (рис. 174).
Примеры и образцы решения задач:
Услуги по выполнению чертежей:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
🎬 Видео
2 3 проекция точки на конусеСкачать
Развертка конусаСкачать
Построение развертки конусаСкачать
Компас 3D - Конус. Прямой и усечённый. Для начинающихСкачать
Конус с призматическим отверстием: Компас 3D #3Скачать
Лекция 5.Поверхности вращения. Часть 5.Скачать
Усеченный конус ч.1 Развертка усечённого конуса.Скачать
Как начертить конус в объемеСкачать
Часть 2. ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ. Блок 10. Конус. Урок 3. Сечение плоскостью под углом к основанию.Скачать