Какой вывод следует из того, что биссектриса треугольника является его высотой?
Если в треугольнике биссектриса является также его высотой, то такой треугольник — равнобедренный.
Дано:
CD — биссектриса и высота.
Проведем анализ задачи.
Какой треугольник — равнобедренный? Треугольник, у которого две стороны равны. Значит, нам нужно доказать, что две стороны ∆ ABC равны: AC=BC.
Равенство сторон вытекает из равенства треугольников. Следовательно, задача сводится к доказательству равенства двух треугольников.
Докажем, что ∆ADC и ∆ BDC равны.
Что нам известно об этих треугольниках?
Поскольку CD — биссектриса ∆ ABC, то она делит угол ACB на два равных угла. Значит, углы ACD и BCD равны.
Так как CD — высота ∆ ABC, то она образует со стороной AB два прямых угла.
Таким образом, у треугольников ADC и BDC уже есть две пары равных углов.
Выделим эти треугольники разными цветами.
Этот прием дает возможность увидеть подсказку, что сторона CD — общая.
Три пары равных элементов для доказательства равенства треугольников есть.
Переходим непосредственно к доказательству.
Рассмотрим ∆ ADC и ∆ BDC.
1) ∠ACD=∠BCD (так как CD — биссектриса треугольника ABC по условию).
2) ∠ADC=∠BDC=90º (так как CD — высота треугольника ABC по условию).
3) Сторона CD — общая.
Следовательно, ∆ ADC = ∆ BDC (по стороне и двум прилежащим к ней углам).
Из равенства треугольников следует равенство соответствующих сторон: AC=BC. Значит, ∆ ABC — равнобедренный с основанием AB (по определению равнобедренного треугольника).
Что и требовалось доказать.
Если в треугольнике совпадают биссектрисы и высоты, проведенные к каждой из сторон, то такой треугольник — равносторонний (по доказанному выше, у него каждый две стороны равны между собой, а значит, все три стороны равны).
Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать
Высоты, биссектрисы и медианы треугольника
Содержание
Из вершин треугольника к противолежащим от вершин сторонам можно проводить различные отрезки, причем так, чтобы получать «интересные данные» внутри фигуры.
К примеру, отрезок из вершины можно опустить таким образом, что в итоге он «приземлится» ровно посередине противолежащей от вершины стороны. В геометрии существует три подобных отрезка, что задают для треугольника новые геометрические параметры — высота, биссектриса и медиана.
Видео:Высота, биссектриса, медиана. 7 класс.Скачать
Высота треугольника
Пусть нам дан треугольник $bigtriangleup,$ где из вершины $C$ к противолежащей стороне $AB$ опущен отрезок $CD$, образующий при этом перпендикуляр к стороне $AB$. Тогда отрезок $CD$ будет являться высотой треугольника $bigtriangleup$. Аналогичный перпендикуляр можно опустить как из вершины $A$, так и из вершины $B$.
Высота треугольника — перпендикуляр, проведенный из вершины к прямой, содержащей противолежащую сторону треугольника.
В остроугольном треугольнике — где углы имеют значение $ 90^,$ — провести высоту будет уже не так интуитивно просто.
Осмотрите треугольник $bigtriangleup$ выше, с тупым углом $angle$.
Нам необходимо провести высоту из вершины $K$ к стороне $PM$. Подумайте, как будет располагаться отрезок, выполните чертеж и сравните свои предположения со скрытым чертежом.
Пересечение высот в треугольнике
Выходит, что в остроугольном треугольнике высоты пересекаются в точке, расположенной строго внутри треугольника — никаких дополнительных построений не требуется.
В тупоугольном треугольнике высоты пересекаются в точке, расположенной вне треугольника, — чтобы эту точку получить, необходимо достраивать продолжение сторон. Так, в случае с нашим тупоугольным треугольником, высоты пересекаются в точке $O$ — внимание на чертеж выше.
Видео:Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать
Биссектриса
Пусть нам дан треугольник $bigtriangleup,$ где из вершины $C$ к противолежащей стороне $AB$ опущен отрезок $CD$ таким образом, что $angle$ делится отрезком $CD$ на два равных друг другу угла. Тогда отрезок $CD$ будет называться биссектрисой треугольника $bigtriangleup$ (от лат. ‘bi’ — «два», ‘secare’ — «резать»).
По аналогии с высотами, такие же отрезки, делящее угол пополам, можно опустить как из вершины $A$, так и из вершины $B$.
Биссектриса треугольника — отрезок, соединяющий вершину с противолежащей стороной и делящий при этом угол данной вершины пополам.
В отличие от высоты, биссектриса — понятие, теснее связанное с углом, чем с треугольником, поэтому ряд ее свойств больше определяет геометрию углов, чем геометрию треугольников. Например, одно из таких замечательных свойств связано со смежными углами. Оказывается, что биссектрисы, проведенные из смежных углов, будут образовывать прямой угол. Давайте это докажем!
Теорема о биссектрисах смежных углов. Биссектрисы смежных углов взаимно перпендикулярны.
Доказательство. $angle$ является смежным с $angle$. $OB$ — биссектриса $angle;$ $OD$, соответственно, биссектриса $angle$. По свойству смежных углов известно, что сумма смежных углов равняется $180^$. То есть:
Согласно условию $angle=angle=frac<angle>$, $angle=angle=frac<angle>$. Тогда уравнение выше можно представить в следующем виде:
Разделим обе части уравнения на $2$ и получим: $angle+angle=90^.$ $angle+angle$ равняется $angle$. Теорема доказана .
Видео:Что такое медиана, биссектриса и высота?Скачать
Медиана
Наконец, проведем отрезок $CD$ в треугольнике $bigtriangleup$ из вершины $C$ к противолежащей стороне $AB$ таким образом, что сторона $AB$ поделится на два равных друг другу отрезка. Мы получили третий важный отрезок в треугольнике — медиану (от лат. ‘medianus’ — «средний»).
Медиана треугольника — отрезок, соединяющий вершину с серединой противолежащей стороны.
Обратили внимание?
Медианы, как и биссектрисы с высотами, пересекаются в одной точке внутри треугольника. Исключением является тупоугольный треугольник и его высоты: они пересекаются вне треугольника.
Доказать это, к сожалению, нам пока не по силам, ибо требуется знание нескольких важных теорем, которые мы обязательно изучим в курсе далее. Как только, так сразу. Пока — принять, понять, поверить.
Видео:17. Медианы, биссектрисы и высоты треугольникаСкачать
Решим задачу!
В $bigtriangleup$ проведена медиана $AD$ к стороне $BC$. Продолжение медианы проходит через точку $E$, расположенную вне треугольника так, что $AD=DE$. Докажите, что треугольники $bigtriangleup$ и $bigtriangleup$ равны.
Дано:
Найти:
Решение
Рассмотрим $bigtriangleup$ и $bigtriangleup$. В них углы $angle$ и $angle$ равны как вертикальные. По заданному условию $AD=DE$. Также имеем равенство сторон $CD=DB$ — по определению медианы: отрезка, делящего противолежащую от угла сторону на два равных отрезка.
Следовательно $bigtriangleup= bigtriangleup$ по первому признаку равенства треугольников: двум сторонам и углу, лежащему между ними.
Видео:Свойство биссектрисы треугольника с доказательствомСкачать
Треугольник. Важные факты о высоте, биссектрисе и медиане
Определения
Медиана треугольника – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
Биссектриса треугольника – это отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны.
Высота треугольника – это перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.
Теорема
В любом треугольнике высоты (или их продолжения) пересекаются в одной точке (рис. 1 и 2), биссектрисы пересекаются в одной точке (рис. 3), медианы пересекаются в одной точке (рис. 4).
Теорема
В равнобедренном треугольнике биссектриса, проведённая к основанию, является медианой и высотой.
Верны и другие утверждения:
В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.
В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
Теорема
В любом треугольнике медианы точкой пересечения делятся в отношении (2:1) , считая от вершины.
Доказательство
Пусть (AD) и (BE) – медианы в треугольнике (ABC) , (O) – точка пересечения (AD) и (BE) .
(DE) – средняя линия в треугольнике (ABC) , тогда (DEparallel AB) , значит (angle ADE = angle BAD) , (angle BED = angle ABE) , следовательно, треугольники (ABO) и (DOE) подобны (по двум углам).
Из подобия треугольников (ABO) и (DOE) : (dfrac = dfrac = dfrac) .
Для других медиан треугольника (ABC) требуемое свойство доказывается аналогично.
Теорема
Медиана треугольника делит его на два равновеликих треугольника (равновеликие треугольники – это треугольники, у которых площади равны).
Доказательство
Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию: (S_ = 0,5cdot ACcdot h) .
Пусть (BD) – медиана в треугольнике (ABC) , тогда (AD = DC) .
(S_ = 0,5cdot ADcdot h) ,
(S_ = 0,5cdot DCcdot h) .
Так как (AD = DC) , то (S_ = S_) , что и требовалось доказать.
Теорема
В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы.
Верно и обратное: если медиана равна половине стороны, к которой она проведена, то она проведена из вершины прямого угла.
Доказательство
1) Докажем, что если (triangle ABC) – прямоугольный, то (BM=frac12AC) , где (M) – середина гипотенузы (AC) .
Достроим треугольник (ABC) до прямоугольника (ABCD) и проведем диагональ (BD) . Т.к. в прямоугольнике диагонали делятся точкой пересечения пополам и равны, то (ACcap BD=M) , причем (AM=MC=BM=MD) , чтд.
2) Докажем, что если в треугольнике (ABC) медиана (BM=AM=MC) , то (angle B=90^circ) .
Треугольники (AMB) и (CMB) – равнобедренные, следовательно, (angle BAM=angle ABM=alpha, quad angle MBC=angle MCB=beta) .
Т.к. сумма углов в треугольнике равна (180^circ) , то для (triangle ABC) :
(alpha+(alpha+beta)+beta=180^circ Rightarrow alpha+beta=90^circ Rightarrow angle B=90^circ) , чтд.
Теорема
Биссектриса треугольника делит его сторону на части, пропорциональные прилежащим сторонам:
Верно и обратное: если отрезок, проведенный из вершины треугольника к стороне, делит эту сторону на отрезки, пропорциональные прилежащим сторонам, то это биссектриса.
Доказательство
Площади треугольников, у которых есть равные углы, относятся как произведения сторон, образующих эти углы, то есть [dfrac<S_><S_> = dfrac = dfrac]
В итоге (dfrac = dfrac<S_><S_> = dfrac) , откуда (dfrac = dfrac) , что и требовалось доказать.
Теорема
Если точка равноудалена от сторон угла, то она лежит на его биссектрисе.
Верно и обратное: если точка лежит на биссектрисе угла, то она равноудалена от его сторон.
Доказательство
1) Докажем, что если (KA=KB) , то (OK) – биссектриса.
Рассмотрим треугольники (AOK) и (BOK) : они равны по катету и гипотенузе, следовательно, (angle AOK=angle BOK) , чтд.
2) Докажем, что если (OK) – биссектриса, то (KA=KB) .
Аналогично треугольники (AOK) и (BOK) равны по гипотенузе и острому углу, следовательно, (KA=KB) , чтд.
📺 Видео
КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольникСкачать
РАВНЫЕ ТРЕУГОЛЬНИКИ. Высоты. Медианы. Биссектрисы. §7 геометрия 7 классСкачать
Медианы, биссектрисы и высоты треугольника | Геометрия 7-9 класс #18 | ИнфоурокСкачать
Медиана, высота и биссектриса треугольника. Центроид, инцентр, ортоцентр. Геометрия 7 класс.Скачать
Равные треугольники. Высота, медиана, биссектриса треугольника - геометрия 7 классСкачать
№133. Докажите, что если биссектриса треугольника совпадает с его высотой, то треугольникСкачать
Высота, медиана, биссектриса треугольника. Как построить в треугольнике. Геометрия 7 классСкачать
Урок 9. Высота, медиана и биссектриса треугольника (7 класс)Скачать
Что такое высота, медиана и биссектриса треугольникаСкачать
Медиана, биссектриса и высота треугольника. Геометрия 7 класс.Скачать
Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать
Формула для биссектрисы треугольникаСкачать
Построение биссектрисы в треугольникеСкачать
Запоминаем: высота, медиана биссектриса треугольникаСкачать