Когда возле трапеции можно описать окружность

Трапеция. Формулы, признаки и свойства трапеции

Параллельные стороны называются основами трапеции, а две другие боковыми сторонами

Так же, трапецией называется четырехугольник, у которого одна пара противоположных сторон параллельна, и стороны не равны между собой.

  • Основы трапеции — параллельные стороны
  • Боковые стороны — две другие стороны
  • Средняя линия — отрезок, соединяющий середины боковых сторон.
  • Равнобедренная трапеция — трапеция, у которой боковые стороны равны
  • Прямоугольная трапеция — трапеция, у которой одна из боковых сторон перпендикулярна основам
Когда возле трапеции можно описать окружностьКогда возле трапеции можно описать окружность
Рис.1Рис.2

Содержание
  1. Основные свойства трапеции
  2. Сторона трапеции
  3. Формулы определения длин сторон трапеции:
  4. Средняя линия трапеции
  5. Формулы определения длины средней линии трапеции:
  6. Высота трапеции
  7. Формулы определения длины высоты трапеции:
  8. Диагонали трапеции
  9. Формулы определения длины диагоналей трапеции:
  10. Площадь трапеции
  11. Формулы определения площади трапеции:
  12. Периметр трапеции
  13. Формула определения периметра трапеции:
  14. Окружность описанная вокруг трапеции
  15. Формула определения радиуса описанной вокруг трапеции окружности:
  16. Окружность вписанная в трапецию
  17. Формула определения радиуса вписанной в трапецию окружности
  18. Другие отрезки разносторонней трапеции
  19. Формулы определения длин отрезков проходящих через трапецию:
  20. Если около трапеции можно описать окружность
  21. Трапеция. Свойства трапеции
  22. Свойства трапеции
  23. Свойства и признаки равнобедренной трапеции
  24. Вписанная окружность
  25. Площадь
  26. 📺 Видео

Видео:Радиус описанной окружности трапецииСкачать

Радиус описанной окружности трапеции

Основные свойства трапеции

AK = KB, AM = MC, BN = ND, CL = LD

3. Средняя линия трапеции параллельна основаниям и равна их полусумме:

m =a + b
2

BC : AD = OC : AO = OB : DO

d 1 2 + d 2 2 = 2 a b + c 2 + d 2

Видео:Около трапеции описана окружностьСкачать

Около трапеции описана окружность

Сторона трапеции

Формулы определения длин сторон трапеции:

a = b + h · ( ctg α + ctg β )

b = a — h · ( ctg α + ctg β )

a = b + c· cos α + d· cos β

b = a — c· cos α — d· cos β

4. Формулы боковых сторон через высоту и углы при нижнем основании:

с =hd =h
sin αsin β

Видео:№710. Докажите, что если около трапеции можно описать окружность, то эта трапеция равнобедренная.Скачать

№710. Докажите, что если около трапеции можно описать окружность, то эта трапеция равнобедренная.

Средняя линия трапеции

Формулы определения длины средней линии трапеции:

1. Формула определения длины средней линии через длины оснований:

m =a + b
2

2. Формула определения длины средней линии через площадь и высоту:

m =S
h

Видео:Задача про трапецию, описанную около окружностиСкачать

Задача про трапецию, описанную около окружности

Высота трапеции

Формулы определения длины высоты трапеции:

h = c· sin α = d· sin β

2. Формула высоты через диагонали и углы между ними:

h =sin γ ·d 1 d 2=sin δ ·d 1 d 2
a + ba + b

3. Формула высоты через диагонали, углы между ними и среднюю линию:

h =sin γ ·d 1 d 2=sin δ ·d 1 d 2
2 m2 m

4. Формула высоты трапеции через площадь и длины оснований:

h =2S
a + b

5. Формула высоты трапеции через площадь и длину средней линии:

h =S
m

Видео:№708. Докажите, что можно описать окружность: а) около любого прямоугольника; б) около любойСкачать

№708. Докажите, что можно описать окружность: а) около любого прямоугольника; б) около любой

Диагонали трапеции

Формулы определения длины диагоналей трапеции:

d 1 = √ a 2 + d 2 — 2 ad· cos β

d 2 = √ a 2 + c 2 — 2 ac· cos β

2. Формулы диагоналей через четыре стороны:

d 1 =d 2 + ab —a ( d 2 — c 2 )
a — b
d 2 =c 2 + ab —a ( c 2 — d 2 )
a — b

d 1 = √ h 2 + ( a — h · ctg β ) 2 = √ h 2 + ( b + h · ctg α ) 2

d 2 = √ h 2 + ( a — h · ctg α ) 2 = √ h 2 + ( b + h · ctg β ) 2

d 1 = √ c 2 + d 2 + 2 ab — d 2 2

d 2 = √ c 2 + d 2 + 2 ab — d 1 2

Видео:Г: Известно, что около трапеции с основаниями 12 и 8 можно описать окружностьСкачать

Г: Известно, что около трапеции с основаниями 12 и 8 можно описать окружность

Площадь трапеции

Формулы определения площади трапеции:

1. Формула площади через основания и высоту:

S =( a + b )· h
2

3. Формула площади через диагонали и угол между ними:

S =d 1 d 2· sin γ=d 1 d 2· sin δ
22

4. Формула площади через четыре стороны:

S =a + bc 2 —(( a — b ) 2 + c 2 — d 2)2
22( a — b )

5. Формула Герона для трапеции

S =a + b√ ( p — a )( p — b )( p — a — c )( p — a — d )
| a — b |

где

p =a + b + c + d— полупериметр трапеции.
2

Видео:Основания равнобедренной трапеции равны 72 и 30. Центр окружности, описанной около трапеции... (ЕГЭ)Скачать

Основания равнобедренной трапеции равны 72 и 30. Центр окружности, описанной около трапеции... (ЕГЭ)

Периметр трапеции

Формула определения периметра трапеции:

1. Формула периметра через основания:

Видео:Трапеция и вписанная окружностьСкачать

Трапеция и вписанная окружность

Окружность описанная вокруг трапеции

Формула определения радиуса описанной вокруг трапеции окружности:

1. Формула радиуса через стороны и диагональ:

R =a·c·d 1
4√ p ( p — a )( p — c )( p — d 1)

где

p =a + c + d 1
2

a — большее основание

Видео:Площадь трапеции и радиус описанной. ДАЕШЬ УСТНОЕ РЕШЕНИЕ!?Скачать

Площадь трапеции и радиус описанной. ДАЕШЬ УСТНОЕ РЕШЕНИЕ!?

Окружность вписанная в трапецию

Формула определения радиуса вписанной в трапецию окружности

1. Формула радиуса вписанной окружности через высоту:

r =h
2

Видео:Окружность, вписанная в трапециюСкачать

Окружность, вписанная в трапецию

Другие отрезки разносторонней трапеции

Формулы определения длин отрезков проходящих через трапецию:

1. Формула определения длин отрезков проходящих через трапецию:

KM = NL =bKN = ML =aTO = OQ =a · b
22a + b

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:Геометрия Центр окружности, описанной около трапеции, принадлежит большему основанию, а боковаяСкачать

Геометрия Центр окружности, описанной около трапеции, принадлежит большему основанию, а боковая

Если около трапеции можно описать окружность

Если около трапеции можно описать окружность, что можно сказать о виде этой трапеции?

(IV признак равнобедренной трапеции)

Если около трапеции можно описать окружность, то она — равнобедренная.

Когда возле трапеции можно описать окружностьДано: ABCD — трапеция,

окружность (O; R) — описанная,

Доказать : трапеция ABCD — равнобедренная.

Если около четырехугольника можно описать окружность, то сумма его противоположных углов равна 180 градусов.

Следовательно, в трапеции ABCD

Значит, трапеция ABCD- равнобедренная (по III признаку).

Видео:Геометрия Задача № 26 Найти радиус вписанной в трапецию окружностиСкачать

Геометрия Задача № 26  Найти радиус вписанной в трапецию окружности

Трапеция. Свойства трапеции

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Когда возле трапеции можно описать окружность

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны .
Если боковые стороны равны, трапеция называется равнобедренной .

Когда возле трапеции можно описать окружность

Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .

Когда возле трапеции можно описать окружность

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

Когда возле трапеции можно описать окружность

Видео:Геометрия Равнобокая трапеция вписана в окружность, центр которой принадлежит одному из основанияСкачать

Геометрия Равнобокая трапеция вписана в окружность, центр которой принадлежит одному из основания

Свойства трапеции

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Когда возле трапеции можно описать окружность

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

Когда возле трапеции можно описать окружность

3. Треугольники Когда возле трапеции можно описать окружностьи Когда возле трапеции можно описать окружность, образованные отрезками диагоналей и основаниями трапеции, подобны.

Коэффициент подобия – Когда возле трапеции можно описать окружность

Отношение площадей этих треугольников есть Когда возле трапеции можно описать окружность.

Когда возле трапеции можно описать окружность

4. Треугольники Когда возле трапеции можно описать окружностьи Когда возле трапеции можно описать окружность, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

Когда возле трапеции можно описать окружность

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

Когда возле трапеции можно описать окружность

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

Когда возле трапеции можно описать окружность

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

Когда возле трапеции можно описать окружность

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

Когда возле трапеции можно описать окружность

Видео:ОГЭ Задача 26 Окружность в трапецииСкачать

ОГЭ Задача 26 Окружность в трапеции

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

Когда возле трапеции можно описать окружность

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

Когда возле трапеции можно описать окружность

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Когда возле трапеции можно описать окружность

Видео:Трапеция в окружности. Задача Шаталова.Скачать

Трапеция в окружности. Задача Шаталова.

Вписанная окружность

Если в трапецию вписана окружность с радиусом Когда возле трапеции можно описать окружностьи она делит боковую сторону точкой касания на два отрезка — Когда возле трапеции можно описать окружностьи Когда возле трапеции можно описать окружность, то Когда возле трапеции можно описать окружность

Когда возле трапеции можно описать окружность

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Площадь

Когда возле трапеции можно описать окружностьили Когда возле трапеции можно описать окружностьгде Когда возле трапеции можно описать окружность– средняя линия

Когда возле трапеции можно описать окружность

Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

📺 Видео

Кто нибудь знает при каких условиях в трапецию можно вписать окружность Как описать тест УчителюСкачать

Кто нибудь знает при каких условиях в трапецию можно вписать окружность Как описать тест Учителю

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Задание 26_Равнобедренная трапеция. Вписанная окружность.Скачать

Задание 26_Равнобедренная трапеция. Вписанная окружность.

Геометрия 11-8. Трапеции, вписанные в окружность и описанные около окружности. Задача 8Скачать

Геометрия 11-8. Трапеции, вписанные в окружность и описанные около окружности. Задача 8
Поделиться или сохранить к себе: