Когда три точки лежат на одной окружности

Признак принадлежности четырёх точек одной окружности

Признак принадлежности четырёх точек одной окружности

Если точки B и C лежат в одной полуплоскости относительно прямой AD, и точки B и C видны из отрезка AD под одним углом (то есть ∠ABD=∠ACD), то точки A, B, C и D лежат на одной окружности.

Когда три точки лежат на одной окружности

Дано: точки B и C лежат в одной полуплоскости относительно прямой AD,

Доказать: точки A, B, C, D лежат на одной окружности

Когда три точки лежат на одной окружностиОбозначим ∠ABD=∠ACD=α.

Опишем около треугольника ABD окружность.

Отметим на этой окружности произвольную точку F, лежащую относительно прямой AD в другой полуплоскости, чем точки B и C.

Четырёхугольник ABDF — вписанный в окружность. Следовательно, сумма его противолежащих углов равна 180°:

Рассмотрим четырехугольник ACDF.

Отсюда следует, что четырёхугольник ABDF — вписанный.

Поскольку около треугольника ABD можно описать только одну окружность, то точка C лежит на той же окружности, что и точки A, B и D.

Видео:№3. Верно ли, что: а) любые три точки лежат в одной плоскости;Скачать

№3. Верно ли, что: а) любые три точки лежат в одной плоскости;

Метод вспомогательной окружности. 9-й класс

Разделы: Математика

Класс: 9

Один мудрец сказал “ Высшее проявление духа – это разум, Высшее проявление разума – это геометрия, Клетка геометрии – треугольник. Он так же неисчерпаем, как и Вселенная. Окружность – душа геометрии. Познайте окружность, и вы не только познаете душу геометрии, но и возвысите душу свою”.

Рассмотрим один из основных геометрических методов решения задач – метод вспомогательной окружности. Предлагаю набор задач, который поможет понять и разобраться в этом методе.

При решении некоторых задач может оказаться полезной следующая теорема.

Т.1 Если для четырех точек плоскости А, В, М, К выполняется одно из следующих условий:

а) точки М и К расположены по одну сторону от прямой АВ и при этом 0 , то точки А, В, М, К расположены на окружности с диаметром АВ. (Это свойство вписанных углов сформулированное в более удобном виде для решения задач) Сформулированные выше предложения можно назвать свойства четырех точек окружности.

Т1 и Т2 и свойства вписанных углов позволяют решать некоторые интересные геометрические задачи с помощью метода, который называют методом вспомогательной окружности.

Суть метода проиллюстрируем на решении следующих задач.

В треугольнике АВС проведена высота СК. Найти длину отрезка, соединяющего точку К с серединой АС, если АС = 10см.

Проведем высоту АМ, тогда углы АКВ и АМВ равны по 90 0 , значит точки А, К, М, В лежат на одной окружности и АВ – диаметр.(На рисунке окружность изображена штриховой линией, хотя ее можно и вообще не изображать, а “представлять в уме”) Точка О – середина АС по условию

Следовательно, АО = ОВ = КО = r = 5 см. (рис. 3)

Когда три точки лежат на одной окружности
Рис. 3

В выпуклом четырехугольнике АВСD диагонали АС и ВD пересекаются в точке О.

0 , 0 , 0 . Найти углы САD и АDС.

Когда три точки лежат на одной окружности
Рис. 4

0 – 49 0 = 62 0 .Таким образом В и С лежат по одну сторону от АD и углы АВО и АСD равны значит точки А, В, С, D лежат на одной окружности. 0 , отсюда 0 – 111 0 = 69 0 .

2. дуга АDС равна 222 0 . Значит дуга DС равна 222 0 – 124 0 = 98 0 . Угол САD вписанный и равен 49 0 . Ответ: 0 0

В окружности проведены параллельные хорды АВ, FC, ED известно, что AD ∩ CE = M,

BE ∩FD = N доказать, что МN ║ АВ.

Обозначим равные дуги АF и ВС – α, тогда , то около четырехугольника ARHQ можно описать окружность, приняв отрезок АН за диаметр. Построив ее, замечаем, что 0 , то точки В, Н, А1 и С1 лежат на одной окружности с диаметром ВН. Следовательно, 0 , что и требовалось доказать.

Рис. 8

Рис. 9

Когда три точки лежат на одной окружностиКогда три точки лежат на одной окружности

б) Рисунок 9 иллюстрирует случай, когда в треугольнике АВС один угол (угол В) тупой. Рассуждение является точно таким же. Только точки В1 и Н как бы меняются местами. В этом случае точка пересечения высот оказывается расположенной вне треугольника.

Для прямоугольного треугольника точкой пересечения высот является вершина прямого угла.

Таким образом, рассмотренные задачи помогают понять суть метода вспомогательной окружности, использование которого помогает решать геометрические задачи.

  1. И.Ф.Шарыгин. Геометрия Дрофа М.: 2007.
  2. И.Ф.Шарыгин. Решение задач. Просвещение. М.: 2007.

Видео:№75. Три точки К, L, М лежат на одной прямой, KL = 6 см, LM= 10 см. Каким может быть расстояние КМСкачать

№75. Три точки К, L, М лежат на одной прямой, KL = 6 см, LM= 10 см. Каким может быть расстояние КМ

—> Сайт Манаенко Татьяны Викторовны —>

—>

ЕГЭ [4]
ГИА [0]
Полезная информация [3]
Это интересно! [2]
Классное руководство в 6Б классе [2]

—>

Видео:никакие три точки окружности не лежат на одной прямойСкачать

никакие три точки окружности не лежат на одной прямой

Каталог статей

Признаки принадлежности точек окружности

Признак 1. Если в четырехугольнике ÐABC+ÐADC=180°, то около четырехугольника можно описать окружность.

Признак 2. Если ÐDAC=ÐDBC, то A, B, C, D лежат на одной окружности.

Признак 4. Если A, B, C, D – образы точек, лежащих на окружности, при движении, гомотетии или подобии.

Движение – преобразование плоскости, сохраняющее расстояние (перемещение).

Признак 5. Если A, B, C, D – образы точек, лежащих на прямой, при инверсии, причем эта прямая не проходит через центр инверсии.

Инверсия относительно окружности (O, r) или просто инверсия — преобразование множества всех точек плоскости без одной точки O, где O – центр окружности радиуса r. Каждой точке этого множества поставим в соответствие точку M’ так, чтобы она лежала на луче OM и OM·OM’=r 2 .

Окружность (O, r) называется окружностью инверсии, точка Oцентром инверсии, r 2 – степенью инверсии

Теорема. Прямая, проходящая через центр O инверсии (без точки O), переходит в себя, а прямая, не проходящая через центр инверсии, переходит в окружность, проходящую через центр инверсии.

Признак 6. Теорема, обратная теореме Птолемея. Если сумма произведений длин противоположных сторон четырехугольника равна произведению длин его диагоналей, то четырехугольник можно вписать в окружность.

💡 Видео

10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

№8. Верно ли утверждение: а) если две точки окружности лежат в плоскостиСкачать

№8. Верно ли утверждение: а) если две точки окружности лежат в плоскости

Первое условие принадлежности четырех точек одной окружностиСкачать

Первое условие принадлежности четырех точек одной окружности

Доказать, что точки лежат на одной окружностиСкачать

Доказать, что точки лежат на одной окружности

ЕГЭ Задание 16 Докажите, что три точки лежат на одной прямойСкачать

ЕГЭ Задание 16 Докажите, что три точки лежат на одной прямой

Четыре точки на окружности | ЕГЭ-2017. Задание 16. Математика. Профильный уровень| Борис ТрушинСкачать

Четыре точки на окружности | ЕГЭ-2017. Задание 16. Математика. Профильный уровень| Борис Трушин

Как искать точки на тригонометрической окружности.Скачать

Как искать точки на тригонометрической окружности.

№971. Напишите уравнение окружности, проходящей через точки А (-3; 0) и B (0; 9), если известноСкачать

№971. Напишите уравнение окружности, проходящей через точки А (-3; 0) и B (0; 9), если известно

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Построение окружности по трём точкам.Скачать

Построение окружности по трём точкам.

№79* Точки А, В и С лежат на одной прямой, точки М и N — середины отрезков АВ и АССкачать

№79* Точки А, В и С лежат на одной прямой, точки М и N — середины отрезков АВ и АС

№4. Точки А, В, С и D не лежат в одной плоскости, а) Могут ли какие-то три изСкачать

№4. Точки А, В, С и D не лежат в одной плоскости, а) Могут ли какие-то три из

Диагностическая работа-1 в формате ОГЭ. Задача-25Скачать

Диагностическая работа-1 в формате ОГЭ. Задача-25

Три параллельные плоскости и четыре точки, лежащие на одной окружностиСкачать

Три параллельные плоскости и четыре точки, лежащие на одной окружности

№2. Отметьте три точки A, B и C не лежащие на одной прямой, и проведите прямые AB, BC и CA.Скачать

№2. Отметьте три точки A, B и C не лежащие на одной прямой, и проведите прямые AB, BC и CA.

Доказать, что точки лежат на одной окружности Д301Скачать

Доказать, что точки лежат на одной окружности Д301

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика
Поделиться или сохранить к себе: