Когда прямоугольный треугольник не существует

Прямоугольный треугольник

Прямоугольный треугольник – треугольник, в котором один угол прямой (то есть равен 90˚).

Сторона, противоположная прямому углу, называется гипотенузой прямоугольного треугольника.

Стороны, прилежащие к прямому углу, называются катетами .

Когда прямоугольный треугольник не существует

Признаки равенства прямоугольных треугольников

Если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны ( по двум катетам ).

Когда прямоугольный треугольник не существует

Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны ( по катету и острому углу ).

Когда прямоугольный треугольник не существуетЕсли гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и острому углу ).

Когда прямоугольный треугольник не существует

Если гипотенуза и катет одного прямоугольного треугольника равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и катету ).

Когда прямоугольный треугольник не существует

Свойства прямоугольного треугольника

1. Сумма острых углов прямоугольного треугольника равна 90˚.

2. Катет, противолежащий углу в 30˚, равен половине гипотенузы.

И обратно, если в треугольнике катет вдвое меньше гипотенузы, то напротив него лежит угол в 30˚.

Когда прямоугольный треугольник не существует

3. Теорема Пифагора:

Когда прямоугольный треугольник не существует, где Когда прямоугольный треугольник не существует– катеты, Когда прямоугольный треугольник не существует– гипотенуза. Видеодоказательство

Когда прямоугольный треугольник не существует

4. Площадь Когда прямоугольный треугольник не существуетпрямоугольного треугольника с катетами Когда прямоугольный треугольник не существует:

Когда прямоугольный треугольник не существует

5. Высота Когда прямоугольный треугольник не существуетпрямоугольного треугольника, проведенная к гипотенузе выражается через катеты Когда прямоугольный треугольник не существуети гипотенузу Когда прямоугольный треугольник не существуетследующим образом:

Когда прямоугольный треугольник не существует

Когда прямоугольный треугольник не существует

6. Центр описанной окружности – есть середина гипотенузы.

Когда прямоугольный треугольник не существует

7. Радиус Когда прямоугольный треугольник не существуетописанной окружности есть половина гипотенузы Когда прямоугольный треугольник не существует:

Когда прямоугольный треугольник не существует

8. Медиана, проведенная к гипотенузе, равна ее половине

9. Радиус Когда прямоугольный треугольник не существуетвписанной окружности выражается через катеты Когда прямоугольный треугольник не существуети гипотенузу Когда прямоугольный треугольник не существуетследующим образом:

Когда прямоугольный треугольник не существует

Когда прямоугольный треугольник не существует

Тригонометрические соотношения в прямоугольном треугольнике смотрите здесь.

Видео:Профильный ЕГЭ 2024. Задача 1. Прямоугольный треугольник. 10 классСкачать

Профильный ЕГЭ 2024. Задача 1. Прямоугольный треугольник. 10 класс

Прямоугольный треугольник. Теорема Пифагора.

теория по математике 📈 планиметрия

Если в треугольнике есть угол, равный 90 градусов, то такой треугольник называется прямоугольным. Стороны прямоугольного треугольника называются – катеты и гипотенуза. Катеты – это стороны, образующие прямой угол. Гипотенуза – сторона, которая располагается напротив прямого угла.

Когда прямоугольный треугольник не существует

На рисунке треугольник АВС – прямоугольный, угол С равен 90º, стороны АС и ВС – катеты, а сторона АВ – гипотенуза.

Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnline

Свойства прямоугольного треугольника

  • В прямоугольном треугольнике гипотенуза является наибольшей стороной.
  • В прямоугольном треугольнике катет, лежащий напротив угла 30 0 , равен половине гипотенузы. И обратно, если катет равен половине гипотенузы, то угол, лежащий напротив этого катета, равен 30 0 .

Когда прямоугольный треугольник не существует

Например, пусть угол А=30 0 , а гипотенуза АВ=28 см, то катет ВС будет равен 14 см, так как лежит напротив угла А=30 0 . Или, например, если катет ВС=6 см, а гипотенуза АВ равна 12 см, то угол А (лежащий напротив катета ВС), равен 30 0 .

  • Сумма острых углов прямоугольного треугольника равна всегда 90 градусов.
  • Медиана, проведенная к гипотенузе, равна её половине.

Когда прямоугольный треугольник не существует

На рисунке изображен прямоугольный треугольник АВС, где CD – медиана, проведенная к гипотенузе. По свойству – медиана CD=0,5АВ, то есть AD=DB=CD.

Видео:Что с углами. Прямоугольный треугольник #shortsСкачать

Что с углами. Прямоугольный треугольник #shorts

Признаки равенства прямоугольных треугольников

Существует 4 признака равенства прямоугольных треугольников:

  1. Если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны.
  2. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.
  3. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.
  4. Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны.

Чтобы быстрее запомнить данные признаки, можно использовать их краткую трактовку:

  1. по катетам;
  2. по катету и прилежащему острому углу;
  3. по гипотенузе и острому углу;
  4. по гипотенузе и катету.

Видео:Нахождение стороны прямоугольного треугольникаСкачать

Нахождение стороны прямоугольного треугольника

Теорема Пифагора

Древнегреческий философ, ученый, математик – Пифагор Самосский вывел теорему, которая до сих применима для решения задач. Теорема названа в честь него – «теорема Пифагора».

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Когда прямоугольный треугольник не существует

На рисунке в прямоугольном треугольнике АВ 2 =АС 2 +ВС 2

Например, если в данном треугольнике катеты равны 9 и 12 см, то можно найти длину гипотенузы, используя теорему: АВ 2 =9 2 +12 2 =81+144=225=15 2 , значит АВ=15 см.

Египетский треугольник

Треугольник со сторонами 3, 4 и 5 см называют Египетским треугольником.

Пифагоровы тройки

Тройки чисел, которые удовлетворяют теореме Пифагора, называют Пифагоровы тройки, а сами числа – Пифагоровы числа. Например, такими являются числа 16, 12 и 20 – это числа, которые при подстановке в формулу теоремы, дают нам верное равенство: 16 2 +12 2 =20 2 , 256+144=400, 400=400.

Видео:Свойства прямоугольного треугольника. 7 класс.Скачать

Свойства прямоугольного треугольника. 7 класс.

Определить возможность существования треугольника по сторонам

Задача

Треугольник существует только тогда, когда сумма любых двух его сторон больше третьей.

Дано: a , b , c – стороны предполагаемого треугольника.

Требуется сравнить длину каждого отрезка-стороны с суммой двух других. Если хотя бы в одном случае отрезок окажется больше суммы двух других, то треугольника с такими сторонами не существует.

Решение

Ниже приведены решения задачи на языке программирования Паскаль двумя способами. В первом случае все стороны проверяются в одном операторе if; во втором случае каждое условие проверяется отдельно, а программа содержит вложенные операторы if-else.

Программа 1 (предпочтительный способ решения):

В языке Паскаль логический оператор and имеет приоритет над операторам >, if проверяется, что каждая из сторон меньше суммы других. Если хотя бы одна будет больше, то все логическое выражение вернет ложь ( false ). В таком случае сработает ветка else .

В данном случае существование треугольника проверяется по-этапно. Если первое условие возвращает ложь, то программа переходит к последнему else. Если же первое условие соблюдено, то поток выполнения программы оказывается у вложенного if. Здесь проверяется уже второе условие. Если оно возвращает ложь, то программа переходит к предпоследнему else. Если и второе логическое выражение возвращает истину (true), то программа идет к третьему условию. При его соблюдении выполняется тело самого вложенного оператора if. При его несоблюдении сработает самое вложенное else.

Несмотря на то, что данная программа кажется длиннее, в определенных ситуациях она может выполняться быстрее, чем первая. Здесь если внешнее if возвращает ложь, то остальные логические выражения вообще не проверяются. В первой программе могут и проверяться (это зависит от особенностей языка программирования).

💥 Видео

Секретное свойство прямоугольного треугольника! Только тссс🤫 #егэ2022 #треугольник #егэпоматематикеСкачать

Секретное свойство прямоугольного треугольника! Только тссс🤫 #егэ2022 #треугольник #егэпоматематике

Высота прямоугольного треугольникаСкачать

Высота прямоугольного треугольника

Всё про прямоугольный треугольник за 15 минут | Осторожно, спойлер! | Борис Трушин !Скачать

Всё про прямоугольный треугольник за 15 минут | Осторожно, спойлер! | Борис Трушин !

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК 😉 #егэ #математика #профильныйегэ #shorts #огэ

Прямоугольный треугольник. Часть 1. Медиана | Борис Трушин #shortsСкачать

Прямоугольный треугольник. Часть 1. Медиана | Борис Трушин #shorts

Прямоугольный треугольник. Часть 3. Биссектриса | Борис Трушин #shortsСкачать

Прямоугольный треугольник. Часть 3. Биссектриса | Борис Трушин #shorts

Задача, которую исключили из экзамена в АмерикеСкачать

Задача, которую исключили из экзамена в Америке

7 класс, 35 урок, Некоторые свойства прямоугольных треугольниковСкачать

7 класс, 35 урок, Некоторые свойства прямоугольных треугольников

Лекция 1. Точка на прямой. Метод прямоугольного треугольникаСкачать

Лекция 1. Точка на прямой. Метод прямоугольного треугольника

Прямоугольный треугольник. Часть 2. Высота | Борис Трушин #shortsСкачать

Прямоугольный треугольник. Часть 2. Высота | Борис Трушин #shorts

✓ Квадрат вписан в прямоугольный треугольник | Ботай со мной #129 | Борис ТрушинСкачать

✓ Квадрат вписан в прямоугольный треугольник | Ботай со мной #129 | Борис Трушин

Высота в прямоугольном треугольникеСкачать

Высота в прямоугольном треугольнике

прямоугольный треугольник для ЕГЭ #егэ2023 #математика #математикаегэ #школа #fyp #егэСкачать

прямоугольный треугольник для ЕГЭ #егэ2023 #математика #математикаегэ #школа #fyp #егэ

Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать

Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline
Поделиться или сохранить к себе: