Коэффициент подобия треугольников трапеции

Узнать ещё

Знание — сила. Познавательная информация

Видео:Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие ТреугольниковСкачать

Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие Треугольников

Подобные треугольники в трапеции

Рассмотрим базовые задачи на подобные треугольники в трапеции.

I. Точка пересечения диагоналей трапеции — вершина подобных треугольников.

Коэффициент подобия треугольников трапеции

Рассмотрим треугольники AOD и COB.

Коэффициент подобия треугольников трапеции

Визуализация облегчает решение задач на подобие. Поэтому подобные треугольники в трапеции выделим разными цветами.

1) ∠AOD= ∠ COB (как вертикальные);

2) ∠DAO= ∠ BCO (как внутренние накрест лежащие при AD ∥ BC и секущей AC).

Следовательно, треугольники AOD и COB подобны (по двум углам).

Из подобия треугольников следует пропорциональность соответствующих сторон:

Коэффициент подобия треугольников трапеции

Одна из диагоналей трапеции равна 28 см и делит другую диагональ на отрезки длиной 5 см и 9 см. Найти отрезки, на которые точка пересечения диагоналей делит первую диагональ.

AO=9 см, CO=5 см, BD=28 см. BO =?, DO- ?

Доказываем подобие треугольников AOD и COB. Отсюда

Коэффициент подобия треугольников трапеции

Выбираем нужные отношения:

Коэффициент подобия треугольников трапеции

Пусть BO=x см, тогда DO=28-x см. Следовательно,

Коэффициент подобия треугольников трапеции

Коэффициент подобия треугольников трапеции

Коэффициент подобия треугольников трапеции

Коэффициент подобия треугольников трапеции

BO=10 см, DO=28-10=18 см.

Ответ: 10 см, 18 см.

Известно, что О — точка пересечения диагоналей трапеции ABCD (AD ∥ BC). Найти длину отрезка BO, если AO:OC=7:6 и BD=39 см.

Аналогичн0, доказываем подобие треугольников AOD и COB и

Коэффициент подобия треугольников трапеции

Пусть BO=x см, тогда DO=39-x см. Таким образом,

Коэффициент подобия треугольников трапеции

Коэффициент подобия треугольников трапеции

Коэффициент подобия треугольников трапеции

II. Продолжения боковых сторон трапеции пересекаются в точке.

Коэффициент подобия треугольников трапеции

Аналогично задаче I, рассмотрим треугольники AFD и BFC:

2) ∠ DAF= ∠ CBF (как соответственные углы при BC ∥ AD и секущей AF).

Следовательно, треугольники AFD и BFC подобны (по двум углам).

Из подобия треугольников следует пропорциональность соответствующих сторон:

Коэффициент подобия треугольников трапеции

Продолжения боковых сторон AB и CD трапеции ABCD пересекаются в точке F. Меньшее основание BC равно 4 см, BF=5 см, AB=15 см. Найти большее основание трапеции.

Доказываем, треугольники AFD и BFC — подобны.

Коэффициент подобия треугольников трапеции

Коэффициент подобия треугольников трапеции

Коэффициент подобия треугольников трапеции

Коэффициент подобия треугольников трапеции

Коэффициент подобия треугольников трапеции

В следующий раз рассмотрим задачи на отношение площадей подобных треугольников.

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Коэффициент подобия треугольников трапеции

Признака подобия треугольников

Две фигуры `F` и `F’` называются подобными, если они переводятся друг в друга преобразованием подобия, т. е. таким преобразованием, при котором расстояния между точками изменяются (увеличиваются или уменьшаются) в одно и то же число раз. Если фигуры `F` и `F’` подобны, то пишется `F

F’`. Напомним, что запись подобия треугольников `Delta ABC

Delta A_1 B_1 C_1` означает, что вершины, совмещаемые преобразованием подобия, стоят на соответствующих местах, т. е. `A` переходит в `A_1`, `B` — в `B_1`, `C` — в `C_1`.

Из свойств преобразования подобия следует, что у подобных фигур соответствующие углы равны, а соответствующие отрезки пропорциональны. В частности, если `Delta ABC

Delta A_1B_1C_1`, то `/_ A = /_ A_1`, `/_ B = /_ B_1`, `/_ C = /_ C_1`,

`A_1B_1 : AB = B_1C_1 : BC = C_1A_1 : CA`.

Два треугольника подобны, если:

1. два угла одного соответственно равны двум углам другого;

2. две стороны одного пропорциональны двум сторонам другого и углы, образованные этими сторонами, равны;

3. три стороны одного треугольника пропорциональны трём сторонам другого.

В решении задач и доказательстве теорем часто используется утверждение, которое, чтобы не повторять каждый раз, докажем сейчас отдельно.

Если две стороны треугольника пересекает прямая, параллельная третьей стороне (рис. 9), то она отсекает треугольник, подобный данному.

Коэффициент подобия треугольников трапеции

Действительно, из параллельности `MN` и `AC` следует, что углы `1` и `2` равны. Треугольники `ABC` и `MBN` имеют два равных угла: общий угол при вершине `B` и равные углы `1` и `2`. По первому признаку эти треугольники подобны.

И сразу применим это утверждение в следующем примере, в котором устанавливается важное свойство трапеции.

Прямая, проходящая через точку пересечения диагоналей трапеции параллельно её основаниям, пересекает боковые стороны трапеции в точках `M` и `N`. Найти длину отрезка `MN`, если основания трапеции равны `a` и `b`.

1. Пусть `O` — точка пересечения диагоналей, `AD = a`, `BC = b`. Прямая `MN` параллельна основанию `AD` (рис. 10а), следовательно, $$ MOparallel AD$$, треугольники `BMO` и `BAD` подобны, поэтому

Коэффициент подобия треугольников трапеции

2. $$ ADparallel BC$$, `Delta AOD

Delta COB` по двум углам (рис. 10б):

`(OD)/(OB) = (AD)/(BC)`, то есть `(OD)/(OB) = a/b`.

Коэффициент подобия треугольников трапеции

3. Учитывая, что `BD = BO + OD` находим отношение

`(BO)/(BD) = (BO)/(BO + OD) = 1/(1 + OD//BO) = b/(a + b)`.

Подставляя это в (1), получаем `MO = (ab)/(a + b)`; аналогично устанавливаем, что `ON = (ab)/(a + b)`, таким образом `MN = (2ab)/(a + b)`.

Точки `M` и `N` лежат на боковых сторонах `AB` и `CD` трапеции `ABCD` и $$ MNparallel AD$$ (рис. 11а). Найти длину `MN`, если `BC = a`, `AD = 5a`, `AM : MB = 1:3`.

Коэффициент подобия треугольников трапеции

1. Пусть $$ BFVert CD$$ и $$ MEVert CD$$ (рис. 11б), тогда `/_ 1 = /_ 2`, `/_ 3 = /_ 4` (как соответствующие углы при пересечении двух параллельных прямых третьей) и `Delta AME

Delta MBF`. Из подобия следует `(AE)/(MF) = (AM)/(MB) = 1/3`.

Коэффициент подобия треугольников трапеции

2. Обозначим `MN = x`. По построению `BCNF` и `MNDE` — параллелограммы, `FN = a`, `ED = x` и, значит, `MF = x — a`; `AE = 5a — x`. Итак, имеем `(5a — x)/(x — a) = 1/3`, откуда находим `x = 4a`.

Напомним, что отношение периметров подобных треугольников равно отношению их сходственных сторон. Верно также следующее утверждение: отношение медиан, биссектрис и высот, проведённых к сходственным сторонам в подобных треугольниках, равно отношению сходственных сторон.

Отношение радиусов вписанных окружностей, как и отношение радиусов описанных окружностей, в подобных треугольниках также равно отношению сходственных сторон.

Попытайтесь доказать это самостоятельно.

Прямоугольные треугольники подобны, если:

1. они имеют по равному острому углу;

2. катеты одного треугольника пропорциональны катетам другого;

3. гипотенуза и катет одного треугольника пропорциональны гипотенузе и катету другого.

Два первых признака следуют из первого и второго признаков подобия треугольников, поскольку прямые углы равны. Третий признак следует, например, из второго признака подобия и теоремы Пифагора.

Заметим, что высота прямоугольного треугольника, опущенная на гипотенузу, разбивает его на два прямоугольных треугольника, подобных между собой и подобных данному. Доказанные в § 1 метрические соотношения Свойств 1, 2, 3 можно доказать, используя подобие указанных треугольников.

СВОЙСТВА ВЫСОТ И БИССЕКТРИС

Если в треугольнике `ABC` нет прямого угла, `A A_1` и `BB_1` — его высоты, то `Delta A_1B_1C

Delta ABC` (этот факт можно сформулировать так: если соединить основания двух высот, то образуется треугольник, подобный данному).

Как всегда, полагаем `AB = c`, `BC = a`, `AC = b`.
а) Треугольник `ABC` остроугольный (рис. 12а).

Коэффициент подобия треугольников трапеции

В треугольнике `A A_1C` угол `A_1` — прямой, `A_1C = AC cos C = ul (b cos C)`.

В треугольнике `B B_1C` угол `B_1` — прямой, `B_1C = BC cos C = ul (a cos C)`.

В треугольниках `A_1 B_1C` и `ABC` угол `C` общий, прилежащие стороны пропорциональны: `(A_1C)/(AC) = (B_1C)/(BC) = cos C`.

Таким образом, `Delta A_1 B_1 C

Delta ABC` с коэффициентом подобия `ul (cos C)`. (Заметим, что `/_ A_1 B_1 C = /_B`).
б) Треугольник `ABC` — тупоугольный (рис. 12б), угол `C` — острый, высота `A A_1` проведена из вершины тупого угла.

Коэффициент подобия треугольников трапеции

$$left.begin
Delta AA_1C, angle A_1 =90^circ Rightarrow A_1C=ACcdot cos C =b cos C;\
Delta BB_1C, angle B_1 =90^circ Rightarrow B_1C=BCcdot cos C =a cos C,
end
right>Rightarrow Delta A_1B_1Csim Delta ABC,$$

коэффициент подобия `ul (cos C)`, `/_ A_1 B_1 C = /_B`.

Случай, когда угол `B` тупой, рассматривается аналогично.
в) Треугольник `ABC` — тупоугольный (рис. 12в), угол `C` — тупой, высоты `A A_1` и `B B_1` проведены из вершин острых углов.

Коэффициент подобия треугольников трапеции

`varphi = /_ BCB_1 = /_ ACA_1 = 180^@ — /_ C`, `cos varphi = — cos C = |cos C|`.

$$left.begin
Delta AA_1C, angle A_1 =90^circ Rightarrow A_1C=ACcdot cosvarphi =b |cos C|;\
Delta BB_1C, angle B_1 =90^circ Rightarrow B_1C=BCcdot cosvarphi =b |cos C|,
end
right>Rightarrow Delta A_1B_1Csim Delta ABC$$

с коэффициентом подобия `ul (k = |cos C|`, `(/_A_1B_1C=/_B)`.

В остроугольном треугольнике `ABC` проведены высоты `A A_1`, `B B_1`, `C C_1` (рис. 13).

Коэффициент подобия треугольников трапеции

Треугольник, вершинами которого служат основания высот, называется «высотным» треугольником (или ортотреугольником).

Доказать, что лучи `A_1 A`, `B_1 B` и `C_1 C` являются биссектрисами углов высотного треугольника `A_1 B_1 C_1` (т. е. высоты остроугольного треугольника являются биссектрисами ортотреугольника).

По первой лемме о высотах `Delta A_1 B_1 C

Delta ABC`, `/_ A_1 B_1 C = /_ B`.

Аналогично `Delta AB_1C_1

Delta ABC`, `/_ AB_1 C_1 = /_ B`, т. е. `/_A_1 B_1C = /_ AB_1 C_1`.

Так как `BB_1` — высота, то `/_AB_1B = /_CB_1B = 90^@`.

Поэтому `/_C_1B_1B = /_A_1B_1B = 90^@ — /_B`, т. е. луч `B_1B` — биссектриса угла `A_1B_1C_1`.

Аналогично доказывается, что `A A_1` — биссектриса угла `B_1 A_1 C_1` и `C_1C` — биссектриса угла `B_1 C_1 A_1`.

Высоты `A A_1`, `B B_1` треугольника `ABC` пересекаются в точке `H` (рис. 14). Доказать, что имеет место равенство `AH * H A_1 = BH * HB_1`, т. е. произведение отрезков одной высоты равно произведению отрезков другой высоты.

Коэффициент подобия треугольников трапеции

Delta BHA_1`, имеют по равному острому углу при вершине `H` (заметим, что этот угол равен углу `C`). Из подобия следует `(AH)/(BH) = (HB_1)/(HA_1)`, откуда `AH * HA_1 = BH * HB_1`. Для тупоугольного треугольника утверждение также верно. Попробуйте доказать самостоятельно.

Высоты `A A_1` и `B B_1` треугольника `ABC` пересекаются в точке `H`, при этом `BH = HB_1` и `AH = 2 HA_1` (рис. 15). Найти величину угла `C`.

Коэффициент подобия треугольников трапеции

1. По условию пересекаются высоты, поэтому треугольник остроугольный. Положим `BH = HB_1 = x` и `HA_1 = y`, тогда `AH = 2y`. По второй лемме о высотах `AH * HA_1 = BH * HB_1`, т. е. `x^2 = 2y^2`, `x = y sqrt 2`.
2. В треугольнике `AHB_1` угол `AHB_1` равен углу `C` (т. к. угол `A_1 AC` равен `90^@ — C`), поэтому `cos C = cos (/_ AHB_1) = x/(2y) = sqrt 2/ 2`. Угол `C` — острый, `/_ C = 45^@`.

Установим ещё одно свойство биссектрисы угла треугольника.

Биссектриса внутреннего угла треугольника делит противолежащую этому углу сторону на отрезки, пропорциональные прилежащим сторонам, т. е. если `AD` — биссектриса треугольника `ABC`, то `(BD)/(DC) = (AB)/(AC)`.

Проведём через точку `B` прямую параллельно биссектрисе `DA`, пусть `K` — её точка пересечения с прямой `AC` (рис. 16).

Коэффициент подобия треугольников трапеции

Параллельные прямые `AD` и `KB` пересечены прямой `KC`, образуются равные углы `1` и `3`. Те же прямые пересечены и прямой `AB`, здесь равные накрест лежащие углы `2` и `4`. Но `AD` — биссектриса, `/_1 = /_2`, следовательно `/_3 = /_4`. Отсюда следует, что треугольник `KAB` равнобедренный, `KA = AB`.
По теореме о пересечении сторон угла параллельными прямыми из $$ ADVert KB$$ следует `(BD)/(DC) = (KA)/(AC)`. Подставляя сюда вместо `KA` равный ему отрезок `AB`, получим `(BD)/(DC) = (AB)/(AC)`. Теорема доказана.

Биссектриса треугольника делит одну из сторон треугольника на отрезки длиной `3` и `5`. Найти в каких пределах может изменяться периметр треугольника.

Пусть `AD` — биссектриса и `BD = 3`, `DC = 5` (рис. 17).

Коэффициент подобия треугольников трапеции

По свойству биссектрисы `AB : AC = 3:5`. Положим `AB = 3x`, тогда `AC = 5x`. Каждая сторона треугольника должна быть меньше суммы двух других сторон, т. е. `ul (5x 1`.

Периметр треугольника `P = 8 + 8x = 8(1 + x)`, поэтому `ul (16

Видео:ПОДОБНЫЕ ТРЕУГОЛЬНИКИ коэффициент подобия 8 классСкачать

ПОДОБНЫЕ ТРЕУГОЛЬНИКИ коэффициент подобия 8 класс

Трапеция. Свойства трапеции

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Коэффициент подобия треугольников трапеции

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны .
Если боковые стороны равны, трапеция называется равнобедренной .

Коэффициент подобия треугольников трапеции

Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .

Коэффициент подобия треугольников трапеции

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

Коэффициент подобия треугольников трапеции

Видео:Задача на подобие треугольников. А ты сможешь решить? | TutorOnline | МатематикаСкачать

Задача на подобие треугольников. А ты сможешь решить? | TutorOnline | Математика

Свойства трапеции

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Коэффициент подобия треугольников трапеции

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

Коэффициент подобия треугольников трапеции

3. Треугольники Коэффициент подобия треугольников трапециии Коэффициент подобия треугольников трапеции, образованные отрезками диагоналей и основаниями трапеции, подобны.

Коэффициент подобия – Коэффициент подобия треугольников трапеции

Отношение площадей этих треугольников есть Коэффициент подобия треугольников трапеции.

Коэффициент подобия треугольников трапеции

4. Треугольники Коэффициент подобия треугольников трапециии Коэффициент подобия треугольников трапеции, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

Коэффициент подобия треугольников трапеции

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

Коэффициент подобия треугольников трапеции

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

Коэффициент подобия треугольников трапеции

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

Коэффициент подобия треугольников трапеции

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

Коэффициент подобия треугольников трапеции

Видео:Средняя линия треугольника и трапеции. 8 класс.Скачать

Средняя линия треугольника и трапеции. 8 класс.

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

Коэффициент подобия треугольников трапеции

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

Коэффициент подобия треугольников трапеции

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Коэффициент подобия треугольников трапеции

Видео:8 класс, 21 урок, Отношение площадей подобных треугольниковСкачать

8 класс, 21 урок, Отношение площадей подобных треугольников

Вписанная окружность

Если в трапецию вписана окружность с радиусом Коэффициент подобия треугольников трапециии она делит боковую сторону точкой касания на два отрезка — Коэффициент подобия треугольников трапециии Коэффициент подобия треугольников трапеции, то Коэффициент подобия треугольников трапеции

Коэффициент подобия треугольников трапеции

Видео:Подобие треугольников (ч.2) | Математика | TutorOnlineСкачать

Подобие треугольников (ч.2) | Математика | TutorOnline

Площадь

Коэффициент подобия треугольников трапецииили Коэффициент подобия треугольников трапециигде Коэффициент подобия треугольников трапеции– средняя линия

Коэффициент подобия треугольников трапеции

Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

📸 Видео

Подобие треугольников. Вся тема за 9 минут | ОГЭ по математике | Молодой РепетиторСкачать

Подобие треугольников. Вся тема за 9 минут | ОГЭ по математике | Молодой Репетитор

ПОДОБНЫЕ ТРЕУГОЛЬНИКИ 8 класс ЗАДАЧИ коэффициент подобияСкачать

ПОДОБНЫЕ ТРЕУГОЛЬНИКИ 8 класс ЗАДАЧИ коэффициент подобия

Задание 25 Подобные треугольники в трапеции. Второй признак подобияСкачать

Задание 25  Подобные треугольники в трапеции. Второй признак подобия

Подобные треугольникиСкачать

Подобные треугольники

Средняя линия и коэффициент подобияСкачать

Средняя линия и коэффициент подобия

Задание 25 Первый признак подобия треугольников в равнобокой трапецииСкачать

Задание 25  Первый признак подобия треугольников в равнобокой трапеции

Задача 15 ОГЭ: подобные треугольники в трапецииСкачать

Задача 15 ОГЭ: подобные треугольники в трапеции

Решение задач на тему "Подобные треугольники". 8 классСкачать

Решение задач на тему "Подобные треугольники". 8 класс

ОГЭ №24 трапеция доказательство подобия треугольниковСкачать

ОГЭ №24 трапеция доказательство подобия треугольников

Подобие треугольников. Трапеция.Скачать

Подобие треугольников.  Трапеция.

Подобные треугольники с нуля до ОГЭ | Математика ОГЭ 2023 | УмскулСкачать

Подобные треугольники с нуля до ОГЭ | Математика ОГЭ 2023 | Умскул

Коэффициент подобия отрезков/ площадей/ объемовСкачать

Коэффициент подобия отрезков/ площадей/ объемов

Задание 25 Первый признак подобия ТрапецияСкачать

Задание 25  Первый признак подобия  Трапеция
Поделиться или сохранить к себе: