Касательная к окружности ее свойство и признак

Окружность

Окружностью называется фигура, состоящая из всех точек плоскости, находящихся от данной точки на данном расстоянии. Данная точка называется центром окружности, а отрезок, соединяющий центр с какой-либо точкой окружности, — радиусом окружности.

Часть плоскости, ограниченная окружностью называется кругом.

Круговым сектором или просто сектором называется часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Сегментом называется часть круга, ограниченная дугой и стягивающей ее хордой.

Видео:Пойми Этот Урок Геометрии и получай 5-ки — Касательная и ОкружностьСкачать

Пойми Этот Урок Геометрии и получай 5-ки — Касательная и Окружность

Основные термины


Касательная

Прямая, имеющая с только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.

Свойства касательной


  1. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Хорда

Отрезок, соединяющий две точки окружности, называется ее хордой. Хорда, проходящая через центр окружности, называется диаметром.

Свойства хорд


  1. Диаметр (радиус), перпендикулярный к хорде, делит эту хорду и обе стягиваемые ею дуги пополам. Верна и обратная теорема: если диаметр (радиус) делит пополам хорду, то он перпендикулярен этой хорде.

Дуги, заключенные между параллельными хордами, равны.

Если две хорды окружности, AB и CD пересекаются в точке M , то произведение отрезков одной хорды равно произведению отрезков другой хорды: AM•MB = CM•MD.

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Свойства окружности


  1. Прямая может не иметь с окружностью общих точек; иметь с окружностью одну общую точку ( касательная ); иметь с ней две общие точки ( секущая ).
  2. Через три точки, не лежащие на одной прямой, можно провести окружность, и притом только одну.
  3. Точка касания двух окружностей лежит на линии, соединяющей их центры.

Теорема о касательной и секущей

Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть: MC 2 = MA•MB .

Теорема о секущих

Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на её внешнюю часть равно произведению другой секущей на её внешнюю часть. MA•MB = MC•MD.

Видео:8 класс, 32 урок, Касательная к окружностиСкачать

8 класс, 32 урок, Касательная к окружности

Углы в окружности

Центральным углом в окружности называется плоский угол с вершиной в ее центре.

Угол, вершина которого лежит на окружности, а стороны пересекают эту окружность, называется вписанным углом.

Любые две точки окружности делят ее на две части. Каждая из этих частей называется дугой окружности. Мерой дуги может служить мера соответствующего ей центрального угла.

Дуга называется полуокружностью, если отрезок, соединяющий её концы, является диаметром.

Свойства углов, связанных с окружностью


  1. Вписанный угол либо равен половине соответствующего ему центрального угла, либо дополняет половину этого угла до 180°.

Углы, вписанные в одну окружность и опирающиеся на одну и ту же дугу, равны.

Вписанный угол, опирающийся на диаметр, равен 90°.

Угол, образованный касательной к окружности и секущей, проведенной через точку касания, равен половине дуги, заключенной между его сторонами.

Видео:Урок по теме КАСАТЕЛЬНАЯ К ОКРУЖНОСТИСкачать

Урок по теме КАСАТЕЛЬНАЯ К ОКРУЖНОСТИ

Длины и площади


  1. Длина окружности C радиуса R вычисляется по формуле:

Площадь S круга радиуса R вычисляется по формуле:

Длина дуги окружности L радиуса R с центральным углом ,измеренным в радианах, вычисляется по формуле:

Площадь S сектора радиуса R с центральным углом в радиан вычисляется по формуле:

Видео:Касательная к окружности и её свойстваСкачать

Касательная к окружности и её свойства

Вписанные и описанные окружности


Окружность и треугольник


  • центр вписанной окружности — точка пересечения биссектристреугольника, ее радиус r вычисляется по формуле:

где S — площадь треугольника, а — полупериметр;

центр описанной окружности — точка пересечения серединных перпендикуляров, ее радиус R вычисляется по формуле:

здесь a, b, c — стороны треугольника, — угол, лежащий против стороны a , S — площадь треугольника;

  • центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы;
  • центр описанной и вписанной окружностей треугольника совпадают только в том случае, когда этот треугольник — правильный.
  • Окружность и четырехугольники


    • около выпуклого четырехугольника можно описать окружность тогда и только тогда, когда сумма его внутренних противоположных углов равна 180°:

    в четырехугольник можно вписать окружность тогда и только тогда, когда у него равны суммы противоположных сторон:

    • около параллелограмма можно описать окружность тогда и только тогда, когда он является прямоугольником;
    • около трапеции можно описать окружность тогда и только тогда, когда эта трапеция — равнобедренная; центр окружности лежит на пересечении оси симметрии трапеции с серединным перпендикуляром к боковой стороне;
    • в параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом.

    Видео:Секущая и касательная. 9 класс.Скачать

    Секущая и касательная. 9 класс.

    Касательная к окружности

    Касательная к окружности ее свойство и признак

    О чем эта статья:

    Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

    Всё про углы в окружности. Геометрия  | Математика

    Касательная к окружности, секущая и хорда — в чем разница

    В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.

    Касательная к окружности ее свойство и признак

    Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.

    Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).

    Касательная к окружности ее свойство и признак

    Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.

    Видео:Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.Скачать

    Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.

    Свойства касательной к окружности

    Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.

    Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.

    Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:

    • окружность с центральной точкой А;
    • прямая а — касательная к ней;
    • радиус АВ, проведенный к касательной.

    Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. аАВ.

    Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.

    В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.

    Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.

    Касательная к окружности ее свойство и признак

    Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

    Задача

    У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.

    Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.

    Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.

    ∠АОС = 180° — ∠САО — ∠АСО = 180° — 90° — 28° = 62°

    Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.

    Касательная к окружности ее свойство и признак

    Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.

    Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.

    Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.

    Касательная к окружности ее свойство и признак

    Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.

    Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.

    Задача 1

    У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.

    Решение

    Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.

    ∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).

    Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:

    ∠BDC = ∠BDA × 2 = 30° × 2 = 60°

    Итак, угол между касательными составляет 60°.

    Касательная к окружности ее свойство и признак

    Задача 2

    К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.

    Решение

    Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.

    Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.

    ∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°

    Касательная к окружности ее свойство и признак

    Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

    Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.

    Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.

    Касательная к окружности ее свойство и признак

    Задача 1

    Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.

    Решение

    Исходя из соотношения касательной и секущей МА 2 = МВ × МС.

    Найдем длину внешней части секущей:

    МС = МВ — ВС = 16 — 12 = 4 (см)

    МА 2 = МВ × МС = 16 х 4 = 64

    Касательная к окружности ее свойство и признак

    Задача 2

    Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.

    Решение

    Допустим, что МО = у, а радиус окружности обозначим как R.

    В таком случае МВ = у + R, а МС = у – R.

    Поскольку МВ = 2 МА, значит:

    МА = МВ : 2 = (у + R) : 2

    Согласно теореме о касательной и секущей, МА 2 = МВ × МС.

    (у + R) 2 : 4 = (у + R) × (у — R)

    Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:

    Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).

    Касательная к окружности ее свойство и признак

    Ответ: MO = 10 см.

    Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.

    Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда . Отметим на касательной прямой точку C, чтобы получился угол AВC.

    Касательная к окружности ее свойство и признак

    Задача 1

    Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.

    Решение

    Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.

    АВ = ∠АВС × 2 = 32° × 2 = 64°

    Касательная к окружности ее свойство и признак

    Задача 2

    У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.

    Решение

    Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:

    КМ = 2 ∠МКВ = 2 х 84° = 168°

    Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.

    ∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2

    Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:

    ∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°

    Видео:НЕКОТОРЫЕ СВОЙСТВА ОКРУЖНОСТИ. КАСАТЕЛЬНАЯ к окружности. §20 геометрия 7 классСкачать

    НЕКОТОРЫЕ СВОЙСТВА ОКРУЖНОСТИ. КАСАТЕЛЬНАЯ к окружности. §20 геометрия 7 класс

    Касательная к окружности

    Касательная к окружности — прямая, имеющая с окружностью единственную общую точку.

    Понятие касательной к окружности и основные свойства касательной проиллюстрированы ниже на рисунке.

    Касательная к окружности ее свойство и признак

    . Угол равен , где — центр окружности. Его сторона касается окружности. Найдите величину меньшей дуги окружности, заключенной внутри этого угла. Ответ дайте в градусах.

    Касательная к окружности ее свойство и признак

    Касательная к окружности перпендикулярна радиусу, проведенному в точку касания. Значит, угол — прямой. Из треугольника получим, что угол равен градуса. Величина центрального угла равна угловой величине дуги, на которую он опирается, значит, величина дуги — тоже градуса.

    . Найдите угол , если его сторона касается окружности, — центр окружности, а большая дуга окружности, заключенная внутри этого угла, равна . Ответ дайте в градусах.

    Касательная к окружности ее свойство и признак

    Это чуть более сложная задача. Центральный угол опирается на дугу , следовательно, он равен градусов. Тогда угол равен . Касательная перпендикулярна радиусу, проведенному в точку касания, значит, угол — прямой. Тогда угол равен .

    . Хорда стягивает дугу окружности в . Найдите угол между этой хордой и касательной к окружности, проведенной через точку . Ответ дайте в градусах.

    Касательная к окружности ее свойство и признак

    Проведем радиус в точку касания, а также радиус . Угол равен . Треугольник — равнобедренный. Нетрудно найти, что угол равен градуса, и тогда угол равен градусов, то есть половине угловой величины дуги .

    Получается, что угол между касательной и хордой, проведенной через точку касания, равен половине угловой величины дуги, заключенной между ними.

    . К окружности, вписанной в треугольник , проведены три касательные. Периметры отсеченных треугольников равны , , . Найдите периметр данного треугольника.

    Касательная к окружности ее свойство и признак

    Вспомним еще одно важное свойство касательных к окружности:
    Отрезки касательных, проведенных из одной точки, равны.
    Периметр треугольника — это сумма всех его сторон. Обратите внимание на точки на нашем чертеже, являющиеся вершинами шестиугольника. Из каждой такой точки проведены два отрезка касательных к окружности. Отметьте на чертеже такие равные отрезки. Еще лучше, если одинаковые отрезки вы будете отмечать одним цветом. Постарайтесь увидеть, как периметр треугольника складывается из периметров отсеченных треугольников.

    Ты нашел то, что искал? Поделись с друзьями!

    Вот более сложная задача из вариантов ЕГЭ:

    . Около окружности описан многоугольник, площадь которого равна . Его периметр равен . Найдите радиус этой окружности.

    Касательная к окружности ее свойство и признак

    Обратите внимание — в условии даже не сказано, сколько сторон у этого многоугольника. Видимо, это неважно. Пусть их будет пять, как на рисунке.
    Окружность касается всех сторон многоугольника. Отметьте центр окружности — точку — и проведите перпендикулярные сторонам радиусы в точки касания.

    Соедините точку с вершинами . Получились треугольники и .
    Очевидно, что площадь многоугольника .
    Как вы думаете, чему равны высоты всех этих треугольников и как, пользуясь этим, найти радиус окружности?

    📺 Видео

    Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать

    Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)

    #59. Олимпиадная задача о касательной к окружности!Скачать

    #59. Олимпиадная задача о касательной к окружности!

    КАСАТЕЛЬНАЯ к ОКРУЖНОСТИ 8 класс геометрия АтанасянСкачать

    КАСАТЕЛЬНАЯ к ОКРУЖНОСТИ 8 класс геометрия Атанасян

    Некоторые свойства окружности касательная к окружности - 7 класс геометрияСкачать

    Некоторые свойства окружности касательная к окружности - 7 класс геометрия

    Касательная к окружности и её свойство. Геометрия 7-8 классСкачать

    Касательная к окружности и её свойство. Геометрия 7-8 класс

    71. Касательная к окружностиСкачать

    71. Касательная к окружности

    Геометрия 8 класс : Касательная к окружностиСкачать

    Геометрия 8 класс : Касательная к окружности

    Доказательство того, что радиус перпендикулярен касательной | Окружность | ГеометрияСкачать

    Доказательство того, что радиус перпендикулярен касательной | Окружность |  Геометрия

    Секретная теорема из учебника геометрииСкачать

    Секретная теорема из учебника геометрии

    7 класс. Геометрия. Окружность и ее свойства. Касательная к окружности. Свойство хорды. Урок #10Скачать

    7 класс. Геометрия. Окружность и ее свойства. Касательная к окружности. Свойство хорды. Урок #10

    Окружность, касательная, секущая и хорда | МатематикаСкачать

    Окружность, касательная, секущая и хорда | Математика
    Поделиться или сохранить к себе: