Касательная к двум окружностям теорема

Две окружности на плоскости.
Общие касательные к двум окружностям
Касательная к двум окружностям теоремаВзаимное расположение двух окружностей
Касательная к двум окружностям теоремаОбщие касательные к двум окружностям
Касательная к двум окружностям теоремаФормулы для длин общих касательных и общей хорды
Касательная к двум окружностям теоремаДоказательства формул для длин общих касательных и общей хорды

Касательная к двум окружностям теорема

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Взаимное расположение двух окружностей

Взаимное расположение на плоскости двух окружностей радиусов r1 и r2 с центрами O1 и O2 определяется расстоянием d между центрами этих окружностей

Расстояние между центрами окружностей больше суммы их радиусов

Расстояние между центрами окружностей равно сумме их радиусов

Расстояние между центрами окружностей равно разности их радиусов

Расстояние между центрами окружностей больше разности их радиусов, но меньше суммы их радиусов

r1 – r2 лежит внутри другой

Расстояние между центрами окружностей меньше разности их радиусов

d r1 и r2 с центрами O1 и O2 определяется расстоянием d между центрами этих окружностей

Расстояние между центрами окружностей больше суммы их радиусов

Расстояние между центрами окружностей равно сумме их радиусов

Расстояние между центрами окружностей равно разности их радиусов

Расстояние между центрами окружностей больше разности их радиусов, но меньше суммы их радиусов

r1 – r2 лежит внутри другой

Расстояние между центрами окружностей меньше разности их радиусов

d r1 и r2 с центрами O1 и O2 определяется расстоянием d между центрами этих окружностей

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Расстояние между центрами окружностей равно разности их радиусов

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Расстояние между центрами окружностей меньше разности их радиусов

d внешней касательной к двум окружностям, если она касается каждой из окружностей, а окружности лежат по одну сторону от этой прямой.

Прямую называют внутренней касательной к двум окружностям, если она касается каждой из окружностей, а окружности лежат по разные стороны от этой прямой.

Существует единственная общая внешняя касательная. Других общих касательных нет.

Существуют две общих внешних касательных. Других общих касательных нет.

Существует единственная общая внутренняя касательная, а также
две общих внешних касательных. Других общих касательных нет.

Каждая из окружностей лежит вне другой

Касательная к двум окружностям теорема

Существуют две общих внешних касательных, а также две общих внутренних касательных. Других общих касательных нет

ФигураРисунокСвойства
Две окружности на плоскостиКасательная к двум окружностям теорема
Каждая из окружностей лежит вне другойКасательная к двум окружностям теорема
Внешнее касание двух окружностейКасательная к двум окружностям теорема
Внутреннее касание двух окружностейКасательная к двум окружностям теорема
Окружности пересекаются в двух точкахКасательная к двум окружностям теоремаКасательная к двум окружностям теорема
Каждая из окружностей лежит вне другой
Касательная к двум окружностям теорема
Внешнее касание двух окружностей
Касательная к двум окружностям теорема
Внутреннее касание двух окружностей
Касательная к двум окружностям теорема
Окружности пересекаются в двух точках
Касательная к двум окружностям теорема
Касательная к двум окружностям теорема
Каждая из окружностей лежит вне другой
Касательная к двум окружностям теорема

Расстояние между центрами окружностей больше суммы их радиусов

Внешнее касание двух окружностей
Касательная к двум окружностям теорема

Расстояние между центрами окружностей равно сумме их радиусов

Внутреннее касание двух окружностей
Окружности пересекаются в двух точках
Касательная к двум окружностям теорема

Расстояние между центрами окружностей больше разности их радиусов, но меньше суммы их радиусов

r1 – r2 лежит внутри другой

Внутренняя касательная к двум окружностямКасательная к двум окружностям теорема
Внутреннее касание двух окружностейКасательная к двум окружностям теорема
Окружности пересекаются в двух точкахКасательная к двум окружностям теорема
Внешнее касание двух окружностейКасательная к двум окружностям теорема
Касательная к двум окружностям теорема
Касательная к двум окружностям теорема

Прямую называют внешней касательной к двум окружностям, если она касается каждой из окружностей, а окружности лежат по одну сторону от этой прямой.

Прямую называют внутренней касательной к двум окружностям, если она касается каждой из окружностей, а окружности лежат по разные стороны от этой прямой.

Существует единственная общая внешняя касательная. Других общих касательных нет.

Существуют две общих внешних касательных. Других общих касательных нет.

Существует единственная общая внутренняя касательная, а также две общих внешних касательных. Других общих касательных нет.

Касательная к двум окружностям теорема

Существуют две общих внешних касательных, а также две общих внутренних касательных. Других общих касательных нет

Внешняя касательная к двум окружностям
Касательная к двум окружностям теорема
Внутренняя касательная к двум окружностям
Касательная к двум окружностям теорема
Внутреннее касание двух окружностей
Касательная к двум окружностям теорема
Окружности пересекаются в двух точках
Касательная к двум окружностям теорема
Внешнее касание двух окружностей
Касательная к двум окружностям теорема
Касательная к двум окружностям теорема
Каждая из окружностей лежит вне другой
Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Прямую называют внешней касательной к двум окружностям, если она касается каждой из окружностей, а окружности лежат по одну сторону от этой прямой.

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Прямую называют внутренней касательной к двум окружностям, если она касается каждой из окружностей, а окружности лежат по разные стороны от этой прямой.

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Существует единственная общая внешняя касательная. Других общих касательных нет.

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Существуют две общих внешних касательных. Других общих касательных нет.

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Существует единственная общая внутренняя касательная, а также две общих внешних касательных. Других общих касательных нет.

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Существуют две общих внешних касательных, а также две общих внутренних касательных. Других общих касательных нет

Видео:Внешняя касательная к двум окружностямСкачать

Внешняя касательная к двум окружностям

Формулы для длин общих касательных и общей хорды двух окружностей

Внешняя касательная к двум окружностям
Внутренняя касательная к двум окружностям
Внутреннее касание двух окружностей
Окружности пересекаются в двух точках
Внешнее касание двух окружностей
Каждая из окружностей лежит вне другой

Длина общей внешней касательной к двум окружностям вычисляется по формуле

Касательная к двум окружностям теорема

Длина общей внутренней касательной к двум окружностям вычисляется по формуле

Касательная к двум окружностям теорема

Длина общей хорды двух окружностей вычисляется по формуле

Касательная к двум окружностям теорема

ФигураРисунокФормула
Внешняя касательная к двум окружностямКасательная к двум окружностям теорема
Внутренняя касательная к двум окружностямКасательная к двум окружностям теорема
Общая хорда двух пересекающихся окружностейКасательная к двум окружностям теорема

Длина общей внешней касательной к двум окружностям вычисляется по формуле

Касательная к двум окружностям теорема

Длина общей внутренней касательной к двум окружностям вычисляется по формуле

Касательная к двум окружностям теорема

Длина общей хорды двух окружностей вычисляется по формуле

Касательная к двум окружностям теорема

Внешняя касательная к двум окружностям
Касательная к двум окружностям теорема
Внутренняя касательная к двум окружностям
Касательная к двум окружностям теорема
Общая хорда двух пересекающихся окружностей
Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Длина общей внешней касательной к двум окружностям вычисляется по формуле

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Длина общей внутренней касательной к двум окружностям вычисляется по формуле

Касательная к двум окружностям теорема

Внешняя касательная к двум окружностям
Внутренняя касательная к двум окружностям
Общая хорда двух пересекающихся окружностей
Касательная к двум окружностям теорема

Длина общей хорды двух окружностей вычисляется по формуле

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Видео:Касательные к двум окружностям.Скачать

Касательные к двум окружностям.

Доказательства формул для длин общих касательных и общей хорды двух окружностей

Утверждение 1 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d (рис.1), то длина общей внешней касательной к этим окружностям вычисляется по формуле

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

что и требовалось доказать.

Утверждение 2 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d , то длина общей внутренней касательной к этим окружностям вычисляется по формуле

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

что и требовалось доказать.

Утверждение 3 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d , то длина общей хорды AB этих окружностей вычисляется по формуле

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Доказательство . Для того, чтобы найти длину общей хорды AB двух окружностей, введём, как показано на рисунке 3,

Видео:Секретная теорема из учебника геометрииСкачать

Секретная теорема из учебника геометрии

Касательная к окружности

Касательная к двум окружностям теорема

О чем эта статья:

Видео:Внутренняя касательная к двум окружностямСкачать

Внутренняя касательная к двум окружностям

Касательная к окружности, секущая и хорда — в чем разница

В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.

Касательная к двум окружностям теорема

Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.

Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).

Касательная к двум окружностям теорема

Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.

Видео:8 класс, 32 урок, Касательная к окружностиСкачать

8 класс, 32 урок, Касательная к окружности

Свойства касательной к окружности

Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.

Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.

Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:

  • окружность с центральной точкой А;
  • прямая а — касательная к ней;
  • радиус АВ, проведенный к касательной.

Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. аАВ.

Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.

В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.

Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.

Касательная к двум окружностям теорема

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Задача

У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.

Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.

Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.

∠АОС = 180° — ∠САО — ∠АСО = 180° — 90° — 28° = 62°

Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.

Касательная к двум окружностям теорема

Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.

Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.

Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.

Касательная к двум окружностям теорема

Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.

Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.

Задача 1

У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.

Решение

Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.

∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).

Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:

∠BDC = ∠BDA × 2 = 30° × 2 = 60°

Итак, угол между касательными составляет 60°.

Касательная к двум окружностям теорема

Задача 2

К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.

Решение

Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.

Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.

∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°

Касательная к двум окружностям теорема

Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.

Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.

Касательная к двум окружностям теорема

Задача 1

Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.

Решение

Исходя из соотношения касательной и секущей МА 2 = МВ × МС.

Найдем длину внешней части секущей:

МС = МВ — ВС = 16 — 12 = 4 (см)

МА 2 = МВ × МС = 16 х 4 = 64

Касательная к двум окружностям теорема

Задача 2

Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.

Решение

Допустим, что МО = у, а радиус окружности обозначим как R.

В таком случае МВ = у + R, а МС = у – R.

Поскольку МВ = 2 МА, значит:

МА = МВ : 2 = (у + R) : 2

Согласно теореме о касательной и секущей, МА 2 = МВ × МС.

(у + R) 2 : 4 = (у + R) × (у — R)

Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:

Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).

Касательная к двум окружностям теорема

Ответ: MO = 10 см.

Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.

Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда . Отметим на касательной прямой точку C, чтобы получился угол AВC.

Касательная к двум окружностям теорема

Задача 1

Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.

Решение

Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.

АВ = ∠АВС × 2 = 32° × 2 = 64°

Касательная к двум окружностям теорема

Задача 2

У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.

Решение

Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:

КМ = 2 ∠МКВ = 2 х 84° = 168°

Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.

∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2

Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:

∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°

Видео:Построение общей внешней касательной к двум окружностямСкачать

Построение общей внешней касательной к двум окружностям

Love Soft

Инструменты пользователя

Инструменты сайта

Боковая панель

Касательная к двум окружностям теоремаЗагрузки всякие

Связь

Содержание

Видео:Касательные к окружностиСкачать

Касательные к окружности

Вписанный и центральный углы. Касательная

Угловой мерой дуги окружности является величина центрального угла, опирающегося на эту дугу.

Центральный угол — угол с вершиной в центре окружности.

Центральный угол равен градусной мере дуги, на которую опирается (по определению).

Если провести два радиуса, то образуется два центральных угла (сумма которых 360°) и две дуги окружности (сумма длин которых 2πR). Большему центральному углу соответствует большая дуга.

Вписанный угол — угол, вершина которого лежит на окружности, а стороны пересекают эту окружность.

Когда говорят, что вписанный угол опирается на дугу — имеют в виду часть окружности, не содержащую вершину угла.

Проще говоря, угол (и центральный и вписанный) опирается на ту дугу, которая принадлежит части плоскости между сторонами угла.

Радианы — отношение длины s стягивающей дуги к её радиусу r. Таким образом, на единичной окружности величина центрального угла в радианах равна длине стягивающей дуги.

Любой конкретной дуге окружности можно сопоставить единственный центральный и бесконечное множество вписанных углов.

Теорема. Вписанный угол равен половине градусной меры дуги, на которую он опирается, или иначе говоря, равен половине центрального угла, опирающегося на ту же дугу.

Следствия:

Следствие из 2-го следствия:

Гипотенуза прямоугольного треугольника является диаметром описанной около него окружности. Касательная к двум окружностям теорема

Видео:Построение общей касательной к двум окружностямСкачать

Построение общей касательной к двум окружностям

Касательная

Касательная прямая к окружности в евклидовой геометрии на плоскости — прямая, которая имеет с окружностью ровно одну общую точку. Также можно определить касательную как предельное положение секущей, когда точки пересечения её с окружностью бесконечно сближаются.

англ Tangent line (танго — касаться)

Касательная к двум окружностям теорема

Две секущие образуют угол, в который попадают две дуги окружности. В этом случае говорят, что секущие высекают эти дуги.

Построение касательной

Касательная к двум окружностям теорема

Соединить данную точку P и центр окружности O. На отрезке OP нужно «восстановить» прямоугольный треугольник. Воспользуемся тем, что если вписанный угол опирается на диаметр окружности, то этот угол прямой.

Разделим отрезок OP пополам — получили точку H. Радиусом OH проводим еще одну окружность. Точка пересечения окружностей и есть точка касания.

Касательная к двум окружностям

Общая касательная к двум окружностям может быть внешней, если обе окружности расположены с одной стороны от нее, и внутренней, если окружности расположены с разных сторон касательной.

Касательная к двум окружностям теорема

Построение общей внешней касательной к двум окружностям радиусами R и r

Из центра окружности большего радиуса – точки O1 описывают окружность радиусом R – r (рисунок 47, а). Находят середину отрезка O2O1 – точку O3 и из нее проводят вспомогательную окружность радиусом O3O2 или O3O1. Обе проведенные окружности пересекаются в точках A и В. Точки O1 и B соединяют прямой и в пересечении ее с окружностью радиусом R определяют точку касания D (рисунок 47, б). Из точки O2 параллельно прямой O1D проводят линию до пересечения с окружностью радиусом r и получают вторую точку касания C. Прямая CD является искомой касательной. Так же строится вторая общая внешняя касательная к этим окружностям (прямая EF).

Построение общей внутренней касательной к двум окружностями радиусов R и r

Касательная к двум окружностям теорема

Из центра любой окружности, например: точки O1, описывают окружность радиусом R + r (рисунок 48, а). Разделив отрезок O2O1 пополам, получают точку O3. Из точки O3 как из центра описывают вторую вспомогательную окружность радиусом O3O2 = O3О1 и отмечают точки A и В пересечения вспомогательных окружностей. Соединив прямой точки A и O1 (рисунок 48, б), в пересечении ее с окружностью радиуса R получают точку касания D. Через центр окружности радиуса r проводят прямую, параллельную прямой O1D, и в пересечении ее с заданной окружностью определяют вторую точку касания С. Прямая CD – внутренняя касательная к заданным окружностям. Аналогично строится и вторая касательная EF.

Касательные прямые и бильярд

Система касательных прямых прицеливания битка использует прямую, проходящую через середину кия, для создания двух касательных прямых от битка в направлении прицельного шара. Две касательные прямые и прямая через середину битка пересекают прямую, проходящую через середину прицельного шара и центр лузы. Необходимо направить удар так, чтобы конечное положение битка (воображаемый шар на рисунке) касалось прицельного шара в точке касания прямой, перпендикулярной направлению на лузу (на рисунке эта касательная выделена зелёным цветом).

Касательная к двум окружностям теорема

Видео:Теорема о секущей и касательной, о секущих, о пересекающихся хордах | Теоремы об окружностях - 1Скачать

Теорема о секущей и касательной, о секущих, о пересекающихся хордах | Теоремы об окружностях - 1

Угол между касательной и хордой

Угол между касательной и хордой, проведенной через точку касания, равен половине угловой величины дуги, заключенной между ними.

Касательная к двум окружностям теорема

Угол между касательной и хордой является вырожденным случаем вписанного угла, в котором вершина угла совпадает с одним из концов дуги.

Касательная перпендикулярна радиусу, проведенному в точку касания.

Пусть $angle MCA=varphi$. Тогда $angle OCA = 90 ^-varphi$. Треугольник $OCA$ – равнобедренный, $OA = OC$ (как радиусы окружности). Значит, $angle AOC= 180 ^-2left ( 90 ^ — varphi right )=2varphi$, что и требовалось доказать.

Заметим, что $angle ABC = varphi$ – как вписанный, опирающийся на ту же дугу.

Касательная к двум окружностям теорема

Видео:Урок по теме КАСАТЕЛЬНАЯ К ОКРУЖНОСТИСкачать

Урок по теме КАСАТЕЛЬНАЯ К ОКРУЖНОСТИ

Теорема о секущей и касательной

Квадрат отрезка касательной равен произведению длин отрезков секущей.

Квадрат касательной равен произведению секущей на ее внешнюю часть.

Касательная к двум окружностям теорема

Мысленно сближать точки пересечения секущей с окружностью: тогда PN будет стремиться к PT с одной стороны, а PM — с другой стороны, а произведение их длин будет стремиться к $PT^2$

Доказательство следует из подобия треугольников PMT и PTN https://i.imgur.com/C5EMn1t.jpg

Видео:Пойми Этот Урок Геометрии и получай 5-ки — Касательная и ОкружностьСкачать

Пойми Этот Урок Геометрии и получай 5-ки — Касательная и Окружность

Угол между секущими

Если точка пересечения двух секущих к окружности находится внутри окружности, то угол между секущими равен полусумме дуг, которые они высекают.

Если точка пересечения двух секущих к окружности находится вне окружности, то угол между секущими равен половине разности дуг, которые они высекают.

Касательная к двум окружностям теорема

Теорема выполняется, если заменить секущую на касательную к окружности.

Видео:Построение касательной к окружностиСкачать

Построение касательной к окружности

Свойства дуг, хорд и углов окружности

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема

Касательная к двум окружностям теорема Доказательство. Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство α = π – γ. Далее получаем γ = 2π — β, значит, α = β — π. Складываем два выражения для α и делим пополам. α = (β-γ)/2

🎦 Видео

Касательная к двум окружностям разного диаметра.Скачать

Касательная к двум окружностям разного диаметра.

Теорема о свойстве касательнойСкачать

Теорема о свойстве касательной

Теорема об угле между касательной и хордой. Доказательство | Как понимать математику #огэматематикаСкачать

Теорема об угле между касательной и хордой. Доказательство | Как понимать математику #огэматематика

Теорема об отрезках хорд и секущихСкачать

Теорема об отрезках хорд и секущих

Доказательство того, что радиус перпендикулярен касательной | Окружность | ГеометрияСкачать

Доказательство того, что радиус перпендикулярен касательной | Окружность |  Геометрия

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

60 Внешние и внутренние касательные к двум кривым, или Теорема Фабрициуса-БьерреСкачать

60 Внешние и внутренние касательные к двум кривым, или Теорема Фабрициуса-Бьерре
Поделиться или сохранить к себе: