Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны 90° , то эти две прямые параллельны.
2) В любой четырёхугольник можно вписать окружность.
3) Центром окружности, описанной около треугольника, является точка пересечения серединных перпендикуляров к сторонам треугольника.
Проверим каждое из утверждений.
1) «Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны 90° , то эти две прямые параллельны» — верно, по признаку параллельности прямых.
2) «В любой четырёхугольник можно вписать окружность» — неверно, поскольку в выпуклый четырёхугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны.
3) «Центром окружности, описанной около треугольника, является точка пересечения серединных перпендикуляров к сторонам треугольника» — верно, по свойству треугольника.
Видео:Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.Скачать
Вписанная окружность
Вписанная окружность — это окружность, которая вписана
в геометрическую фигуру и касается всех его сторон.
Окружность, точно можно вписать в такие геометрические фигуры, как:
- Треугольник
- Выпуклый, правильный многоугольник
- Квадрат
- Равнобедренная трапеция
- Ромб
В четырехугольник, можно вписать окружность,
только при условии, что суммы длин
противоположных сторон равны.
Во все вышеперечисленные фигуры
окружность, может быть вписана, только один раз.
Окружность невозможно вписать в прямоугольник
и параллелограмм, так как окружность не будет
соприкасаться со всеми сторонам этих фигур.
Геометрические фигуры, в которые вписана окружность,
называются описанными около окружности.
Описанный треугольник — это треугольник, который описан
около окружности и все три его стороны соприкасаются с окружностью.
Описанный четырехугольник — это четырехугольник, который описан
около окружности и все четыре его стороны соприкасаются с окружностью.
Свойства вписанной окружности
В треугольник
- В любой треугольник может быть вписана окружность, причем только один раз.
- Центр вписанной окружности — точка пересечения биссектрис треугольника.
- Вписанная окружность касается всех сторон треугольника.
- Площадь треугольника, в который вписана окружность, можно рассчитать по такой формуле:
[ S = frac(a+b+c) cdot r = pr ]
p — полупериметр четырехугольника.
r — радиус вписанной окружности четырехугольника.
окружность и любая из сторон треугольника.
перпендикуляры к любой точке касания.
треугольника на 3 пары равных отрезков.
Поэтому, расстояние между центрами этих окружностей можно найти с помощью формулы Эйлера:
с — расстояние между центрами вписанной и описанной окружностей треугольника.
R — радиус описанной около треугольника.
r — радиус вписанной окружности треугольника.
В четырехугольник
- Не во всякий четырехугольник можно вписать окружность.
- Если у четырехугольника суммы длин его противолежащих
сторон равны, то окружность, может быть, вписана (Теорема Пито). - Центр вписанной окружности и середины двух
диагоналей лежат на одной прямой (Теорема Ньютона, прямая Ньютона). - Точка пересечения биссектрис — это центр вписанной окружности.
- Точка касания — это точка, в которой соприкасается
окружность и любая из сторон четырехугольника. - Площадь четырехугольника, в который вписана окружность, можно рассчитать по такой формуле:
[ S = frac(a+b+c+d)cdot r = pr ]
p — полупериметр четырехугольника.
r — радиус вписанной окружности четырехугольника.
равноудалены от этой конца и начала этой стороны, то есть от его вершин.
Примеры вписанной окружности
- Треугольник
- Четырехугольник
- Многоугольник
Примеры описанного четырехугольника:
равнобедренная трапеция, ромб, квадрат.
Примеры описанного треугольника:
равносторонний, равнобедренный,
прямоугольный треугольники.
Верные и неверные утверждения
- Радиус вписанной окружности в треугольник и радиус вписанной
в четырехугольник вычисляется по одной и той же формуле. Верное утверждение. - Любой параллелограмм можно вписать в окружность. Неверное утверждение.
- В любой четырехугольник можно вписать окружность. Неверное утверждение.
- В любой ромб можно вписать окружность. Верное утверждение.
- Центр вписанной окружности треугольника это точка пересечения биссектрис. Верное утверждение.
- Окружность вписанная в треугольник касается всех его сторон. Верное утверждение.
- Угол вписанный в окружность равен соответствующему центральному
углу опирающемуся на ту же дугу. Неверное утверждение. - Радиус вписанной окружности в прямоугольный треугольник равен
половине разности суммы катетов и гипотенузы. Верное утверждение. - Вписанные углы опирающиеся на одну и ту же хорду окружности равны. Неверное утверждение.
- Вписанная окружность в треугольник имеет в общем
три общие точки со всеми сторонами треугольника. Верное утверждение.
Окружность вписанная в угол
Окружность вписанная в угол — это окружность, которая
лежит внутри этого угла и касается его сторон.
Центр окружности, которая вписана в угол,
расположен на биссектрисе этого угла.
К центру окружности вписанной в угол, можно провести,
в общей сложности два перпендикуляра со смежных сторон.
Длина диаметра, радиуса, хорды, дуги вписанной окружности
измеряется в км, м, см, мм и других единицах измерения.
Видео:Если в четырёхугольник можно вписать окружностьСкачать
Укажите номера.
Задание:
Укажите номера верных утверждений.
1) Диагонали трапеции пересекаются под прямым углом.
2) В любой четырехугольник можно вписать окружность.
3) Центр окружности, описанной около треугольника, находится в точке пересечения его высот.
4) Медиана — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.
5) Диагонали ромба равны.
Номера запишите в порядке возрастания без пробелов, запятых и других дополнительных символов.
Решение:
1) Диагонали трапеции пересекаются под прямым углом.
Утверждение неверное, диагонали трапеции пересекаются не под прямым углом.
2) В любой четырехугольник можно вписать окружность.
Утверждение неверное. В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны.
3) Центр окружности, описанной около треугольника, находится в точке пересечения его высот.
Утверждение неверное. Центр окружности, описанной около треугольника, находится в точке пересечения его серединных перпендикуляров.
4) Медиана — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.
5) Диагонали ромба равны.
Утверждение неверное. Диагонали ромба неравны.
📽️ Видео
В любой четырёхугольник можно вписать окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
Свойство четырехугольника, в который можно вписать окружностьСкачать
Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать
19 задание огэ математика 2023 ВСЕ ТИПЫ геометрияСкачать
Урок 2. Описанная окружность около четырехугольника. Задача из ОГЭ| Подобные треугольникиСкачать
Как сдать ОГЭ по математике на ТРОЙКУ? / Какие утверждения для фигур необходимо знать для сдачи ОГЭ?Скачать
ОГЭ/База Все прототипы задач на окружностиСкачать
Четырехугольники, вписанные в окружность. 9 класс.Скачать
ГЕОМЕТРИЯ ОГЭ ЕГЭ. ЧЕТЫРЕХУГОЛЬНИКИ ВПИСАННЫЕ И ОПИСАННЫЕСкачать
Задача на окружности из ОГЭ-2023!! Разбор за 30 секСкачать
ГИА по математике 2013, модуль геометрия: выбрать неверные утверждения.Скачать
Вписанный в окружность четырёхугольник.Скачать
3 правила для вписанного четырехугольника #shortsСкачать
Как правильно решить задание про четырёхугольник? / Разбор заданий на ОГЭ по геометрииСкачать
Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Вписанная и описанная окружность - от bezbotvyСкачать
Разбор задания 13 ОГЭ по математикеСкачать
Всё про углы в окружности. Геометрия | МатематикаСкачать