Какие точки лежат на единичной окружности

Видео:ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по Математике

Единичная окружность

Какие точки лежат на единичной окружности

О чем эта статья:

10 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Как искать точки на тригонометрической окружности.Скачать

Как искать точки на тригонометрической окружности.

Единичная окружность в тригонометрии

Все процессы тригонометрии изучают на единичной окружности. Сейчас узнаем, какую окружность называют единичной и дадим определение.

Единичная окружность — это окружность с центром в начале прямоугольной декартовой системы координат и радиусом, равным единице.

Прямоугольная система координат — прямолинейная система координат с взаимно перпендикулярными осями на плоскости или в пространстве. Наиболее простая и поэтому часто используемая система координат.

Радиус — отрезок, который соединяет центр окружности с любой точкой, лежащей на окружности, а также длина этого отрезка. Радиус составляет половину диаметра.

Единичную окружность с установленным соответствием между действительными числами и точками окружности называют числовой окружностью.

Какие точки лежат на единичной окружности

Поясним, как единичная окружность связана с тригонометрией.

В тригонометрии мы постоянно сталкиваемся с углами поворота. А углы поворота связаны с вращением по окружности.

Угол поворота — это угол, который образован положительным направлением оси OX и лучом OA.

Величины углов поворота не зависят от радиуса окружности, по которой происходит вращение, поэтому удобно работать именно с окружностью единичного радиуса. Это позволяет избавиться от коэффициентов при математическом описании. Вот и все объяснение полезности единичной тригонометрической окружности.

Все углы, которые принадлежат одному семейству, дают одинаковые абсолютные значения тригонометрических функций, но эти значения могут различаться по знаку. Вот как:

  • Если угол находится в первом квадранте, все тригонометрические функции имеют положительные значения.
  • Для угла во втором квадранте все функции, за исключением sin и cos, отрицательны.
  • В третьем квадранте значения всех функций, кроме tg и ctg, меньше нуля.
  • В четвертом квадранте все функции, за исключением cos и sec, имеют отрицательные значения.

Градусная мера окружности равна 360°. Чтобы решать задачи быстро, важно запомнить, где находятся углы 0°; 90°; 180°; 270°; 360°. Единичная окружность с градусами выглядит так:

Какие точки лежат на единичной окружности

Радиан — одна из мер для определения величины угла.

Один радиан — это величина угла между двумя радиусами, проведенными так, что длина дуги между ними равна величине радиуса.

Число радиан для полной окружности — 360 градусов.

Длина окружности равна 2πr, что превышает длину радиуса в 2π раза.

Поскольку по определению 1 радиан — это угол между концами дуги, длина которой равна радиусу, в полной окружности заключен угол, равный 2π радиан.

Потренируемся переводить радианы в градусы. В полной окружности содержится 2π радиан, или 360 градусов. Таким образом:

  • 2π радиан = 360°
  • 1 радиан = (360/2π) градусов
  • 1 радиан = (180/π) градусов
  • 360° = 2π радиан
  • 1° = (2π/360) радиан
  • 1° = (π/180) радиан

Кстати, определение синуса, косинуса, тангенса и котангенса в тригонометрии дается через координаты точек на единичной окружности. Эти определения дают возможность раскрыть свойства синуса, косинуса, тангенса и котангенса.

Уравнение единичной окружности

При помощи этого уравнения, вместе с определениями синуса и косинуса, можно записать основное тригонометрическое тождество:

Какие точки лежат на единичной окружности

Какие точки лежат на единичной окружности

Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

Видео:Изобразить на единичной окружности точку.Скачать

Изобразить на единичной окружности точку.

Все точки на единичной окружности

Видео:Найти координаты точки единичной окружности полученной при повороте точки Ро(1;0) на угол π, 450°...Скачать

Найти координаты точки единичной окружности полученной при повороте точки Ро(1;0) на угол π, 450°...

Единичная окружность

Какие точки лежат на единичной окружности

О чем эта статья:

10 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:45 Где лежат на единичной окружности точки π/4, 3π/4Скачать

45 Где лежат на единичной окружности точки π/4, 3π/4

Единичная окружность в тригонометрии

Все процессы тригонометрии изучают на единичной окружности. Сейчас узнаем, какую окружность называют единичной и дадим определение.

Единичная окружность — это окружность с центром в начале прямоугольной декартовой системы координат и радиусом, равным единице.

Прямоугольная система координат — прямолинейная система координат с взаимно перпендикулярными осями на плоскости или в пространстве. Наиболее простая и поэтому часто используемая система координат.

Радиус — отрезок, который соединяет центр окружности с любой точкой, лежащей на окружности, а также длина этого отрезка. Радиус составляет половину диаметра.

Единичную окружность с установленным соответствием между действительными числами и точками окружности называют числовой окружностью.

Какие точки лежат на единичной окружности

Поясним, как единичная окружность связана с тригонометрией.

В тригонометрии мы постоянно сталкиваемся с углами поворота. А углы поворота связаны с вращением по окружности.

Угол поворота — это угол, который образован положительным направлением оси OX и лучом OA.

Величины углов поворота не зависят от радиуса окружности, по которой происходит вращение, поэтому удобно работать именно с окружностью единичного радиуса. Это позволяет избавиться от коэффициентов при математическом описании. Вот и все объяснение полезности единичной тригонометрической окружности.

Все углы, которые принадлежат одному семейству, дают одинаковые абсолютные значения тригонометрических функций, но эти значения могут различаться по знаку. Вот как:

  • Если угол находится в первом квадранте, все тригонометрические функции имеют положительные значения.
  • Для угла во втором квадранте все функции, за исключением sin и cos, отрицательны.
  • В третьем квадранте значения всех функций, кроме tg и ctg, меньше нуля.
  • В четвертом квадранте все функции, за исключением cos и sec, имеют отрицательные значения.

Градусная мера окружности равна 360°. Чтобы решать задачи быстро, важно запомнить, где находятся углы 0°; 90°; 180°; 270°; 360°. Единичная окружность с градусами выглядит так:

Какие точки лежат на единичной окружности

Радиан — одна из мер для определения величины угла.

Один радиан — это величина угла между двумя радиусами, проведенными так, что длина дуги между ними равна величине радиуса.

Число радиан для полной окружности — 360 градусов.

Длина окружности равна 2πr, что превышает длину радиуса в 2π раза.

Поскольку по определению 1 радиан — это угол между концами дуги, длина которой равна радиусу, в полной окружности заключен угол, равный 2π радиан.

Потренируемся переводить радианы в градусы. В полной окружности содержится 2π радиан, или 360 градусов. Таким образом:

  • 2π радиан = 360°
  • 1 радиан = (360/2π) градусов
  • 1 радиан = (180/π) градусов
  • 360° = 2π радиан
  • 1° = (2π/360) радиан
  • 1° = (π/180) радиан

Кстати, определение синуса, косинуса, тангенса и котангенса в тригонометрии дается через координаты точек на единичной окружности. Эти определения дают возможность раскрыть свойства синуса, косинуса, тангенса и котангенса.

Уравнение единичной окружности

При помощи этого уравнения, вместе с определениями синуса и косинуса, можно записать основное тригонометрическое тождество:

Какие точки лежат на единичной окружности

Какие точки лежат на единичной окружности

Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

Видео:10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Тригонометрический круг: вся тригонометрия на одном рисунке

Тригонометрический круг — это самый простой способ начать осваивать тригонометрию. Он легко запоминается, и на нём есть всё необходимое.
Тригонометрический круг заменяет десяток таблиц.

  • Какие точки лежат на единичной окружности

Вот что мы видим на этом рисунке:

  • Перевод градусов в радианы и наоборот. Полный круг содержит градусов, или радиан.
  • Значения синусов и косинусов основных углов. Помним, что значение косинуса угла мы находим на оси , а значение синуса — на оси .
  • И синус, и косинус принимают значения от до .
  • Значение тангенса угла тоже легко найти — поделив на . А чтобы найти котангенс — наоборот, косинус делим на синус.
  • Знаки синуса, косинуса, тангенса и котангенса.
  • Синус — функция нечётная, косинус — чётная.
  • Тригонометрический круг поможет увидеть, что синус и косинус — функции периодические. Период равен .
  • Видео:Тригонометрическая окружность. Как выучить?Скачать

    Тригонометрическая окружность. Как выучить?

    А теперь подробно о тригонометрическом круге:

    Нарисована единичная окружность — то есть окружность с радиусом, равным единице, и с центром в начале системы координат. Той самой системы координат с осями и , в которой мы привыкли рисовать графики функций.

    Мы отсчитываем углы от положительного направления оси против часовой стрелки.

    Полный круг — градусов.
    Точка с координатами соответствует углу ноль градусов. Точка с координатами отвечает углу в , точка с координатами — углу в . Каждому углу от нуля до градусов соответствует точка на единичной окружности.

    Косинусом угла называется абсцисса (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Синусом угла называется ордината (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Всё это легко увидеть на нашем рисунке.

    Итак, косинус и синус — координаты точки на единичной окружности, соответствующей данному углу. Косинус — абсцисса , синус — ордината . Поскольку окружность единичная, для любого угла и синус, и косинус находятся в пределах от до :

    Простым следствием теоремы Пифагора является основное тригонометрическое тождество:

    Для того, чтобы узнать знаки синуса и косинуса какого-либо угла, не нужно рисовать отдельных таблиц. Всё уже нарисовано! Находим на нашей окружности точку, соответствующую данному углу , смотрим, положительны или отрицательны ее координаты по (это косинус угла ) и по (это синус угла ).

    Принято использовать две единицы измерения углов: градусы и радианы. Перевести градусы в радианы просто: градусов, то есть полный круг, соответствует радиан. На нашем рисунке подписаны и градусы, и радианы.

    Если отсчитывать угол от нуля против часовой стрелки — он положительный. Если отсчитывать по часовой стрелке — угол будет отрицательным. Например, угол — это угол величиной в , который отложили от положительного направления оси по часовой стрелке.

    Легко заметить, что

    Углы могут быть и больше градусов. Например, угол — это два полных оборота по часовой стрелке и еще . Поскольку, сделав несколько полных оборотов по окружности, мы возвращаемся в ту же точку с теми же координатами по и по , значения синуса и косинуса повторяются через . То есть:

    где — целое число. То же самое можно записать в радианах:

    Можно на том же рисунке изобразить ещё и оси тангенсов и котангенсов, но проще посчитать их значения. По определению,

    Видео:№1012. Проверьте, что точки М1(0; 1), M2(½;√3/2), M3(√2/2; √2/2)Скачать

    №1012. Проверьте, что точки М1(0; 1), M2(½;√3/2), M3(√2/2; √2/2)

    Как запомнить тригонометрический круг?

    Лучший способ запомнить новую информацию в математике – это понять логику. Поэтому в этой статье я расскажу вам логику тригонометрического круга.

    На нем есть (16) стандартных точек. В них можно отметить числа с пи , можно градусы (имеется в виду градусные меры углов).

    Какие точки лежат на единичной окружностиКакие точки лежат на единичной окружности

    На круге каждой точке соответствует бесконечное множество чисел и градусов, поэтому запомнить их все невозможно. Гораздо лучше понять как расположены числа и градусы (для этого вы можете прочесть статьи здесь и здесь ).

    Дальше я сосредоточусь на том, как запомнить расположение чисел на осях синуса, косинуса, тангенса и котангенса.

    Видео:Отбор корней по окружностиСкачать

    Отбор корней по окружности

    Как запомнить какой точке какой синус и косинус соответствует?

    Шаг 1. Прежде всего, вспомните, что обычно горизонтальную ось называют осью косинусов, а вертикальную — осью синусов, так как:

    — косинус равен абсциссе точки на числовой окружности
    — синус равен ординате точки на числовой окружности.

    Поэтому положительные значения косинусов и синусов расположены там же, где соответственно «иксы» и «игреки» положительны. Аналогично с отрицательными (на картинке ниже: оранжевые – плюс, синие – минус).

    Какие точки лежат на единичной окружности

    Шаг 2. Вспомните, что радиус тригонометрического круга равен (1), а это значит, что единицы и минус единицы на осях будут там, где круг пересечет оси.

    Какие точки лежат на единичной окружности

    Какие точки лежат на единичной окружности

    Шаг 3. Так как ось котангенсов — это скопированная ось косинусов сдвинутая на 1 вверх, то и положительные отрицательные части осей там же где и на оси косинусов. Аналогично с осью тангенсов и синусов.

    Какие точки лежат на единичной окружности

    Шаг 4. Значение «(1)» на оси тангенсов и котангенсов находятся на одном уровне с единицей на оси косинусов и синусов. Аналогично, (-1) находятся на одном уровне с (-1) на оси синусов и косинусов.

    Какие точки лежат на единичной окружности

    Шаг 5. Дальше стоит понять, что (±frac >) находится ближе к (0), чем (±sqrt ).

    Какие точки лежат на единичной окружности

    Шаг 6. (±sqrt ) – это самые крайние точки, которые мы ставим на осях.

    Какие точки лежат на единичной окружности

    Опять же, подписывать все значения на тригонометрическом круге, и расставлять все числа на осях ни к чему. Достаточно нанести лишь те значения, которые надо найти.

    Пример (ЕГЭ). Найдите значение выражения (36sqrt , tg,frac sin⁡,frac ).
    Решение:

    Видео:№8. Верно ли утверждение: а) если две точки окружности лежат в плоскостиСкачать

    №8. Верно ли утверждение: а) если две точки окружности лежат в плоскости

    Алгебра

    Лучшие условия по продуктам Тинькофф по этой ссылке

    Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

    . 500 руб. на счет при заказе сим-карты по этой ссылке

    Лучшие условия по продуктам
    ТИНЬКОФФ по данной ссылке

    План урока:

    Видео:В какой четверти находится точка единичной окружности, полученная при повороте Ро(1;0) на угол...Скачать

    В какой четверти находится точка единичной окружности, полученная при повороте Ро(1;0) на угол...

    Числовая и единичная окружность

    В средней школе мы уже познакомились с координатной, или числовой прямой. Так называют абстрактную прямую, на которой выбрана точка отсчета, определен единичный отрезок, а также задано направление, в котором следует откладывать положительные числа. С помощью координатной прямой удается наглядно представлять сложение и вычитание как положительных, так и отрицательных чисел, решать задачи, связанные с перемещением по прямой, и делать многое другое.

    Однако порою приходится рассматривать задачи, связанные с движением по окружности, а также складывать и вычитать углы. Здесь математикам помогает другая абстракция – числовая окружность. Пусть два гонщика (Вася и Петя) едут по круговой трассе, чья протяженность составляет 1 км. За минуту Вася проехал 1250 м, а Петя преодолел только 500 м. Попытаемся показать их положение графически.

    Построим на координатной плоскости окружность с центром в начале координат длиной 1 км. Будем считать, старт находится в крайней правой точке трассы, на пересечении оси Ох и окружности. Также условимся, что гонщики едут против часовой стрелки. Тогда получим такую картинку:

    Петя проедет ровно половину окружности и окажется в крайней левой точке трассы. Вася же за минуту успел сделать полный круг (1 км) и проехать ещё 250 м, а потому оказался в верхней точке.

    Теперь предположим, что Петя стоит на месте, а Вася проехал ещё 250 м (четверть круга). В результате оба пилота оказались в одной точке, но проехали они разное расстояние! Получается, что по положению гонщика невозможно однозначно определить, сколько именно метров он проехал.

    Заметим, что очень удобно характеризовать положение точки на числовой окружности с помощью угла. Достаточно соединить точку отрезком с началом координат. Полученный отрезок образует с прямой Ох некоторый угол α:

    В тригонометрии предпочитают использовать особую числовую прямую, радиус которой равен единице. По ряду причин, которые станут ясны чуть позже, с ней очень удобно работать. Такую фигуру называют единичной окружностью.

    Выглядит единичная окружность так:

    Видео:Курс по тригонометрии(Единичная окружность)Скачать

    Курс по тригонометрии(Единичная окружность)

    Откладывание углов на единичной окружности

    Положение каждой точки на единичной окружности можно указать с помощью угла. Пусть надо найти точку, соответствующую углу 60°. Для этого просто строим угол следующим образом:

    Углы, которые откладывают на единичной окружности, называют углами поворота. В данном случае можно утверждать, что точке А соответствует угол поворота, равный 60°.

    Отложить можно и угол, больший 90° и даже 180°. Выглядеть они будут примерно так:

    Углы можно складывать друг с другом и вычитать. Предположим, нам надо построить угол, равный сумме углов 120° и 110°. Для этого сначала совершить поворот на 120°, а потом от полученного отрезка отложить ещё один угол в 110°:

    Ясно, что возможно построить любой угол в диапазоне от 0° до 360°. А можно ли отложить угол, который будет больше 360°? В обычной планиметрии мы не работаем с такими углами, однако в тригонометрии они существуют. Действительно, мы же можем, например, сложить углы 250° и 140°. В итоге получится 250 + 140 = 390°:

    В результате мы совершили полный оборот (360°) и вдобавок повернули отрезок ещё на 30°. Получается, что углам в 390° и 30° соответствует одна и та же точка.

    Углы можно и вычитать друг из друга. Для этого вычитаемый угол надо отложить в противоположном направлении – не против часовой, а по часовой стрелке. Например, вычитая из 150° угол в 70°, придем в точку, соответствующую 150 – 70 = 80°:

    Из арифметики мы помним, что вычитание можно заменить прибавлением противоположного (то есть отрицательного) числа:

    Получается, что отложив угол 70° по часовой стрелке, мы прибавили к 150° отрицательный угол (– 70°). То есть на единичной окружности можно откладывать отрицательные углы! Для их получения поворот надо осуществлять по часовой стрелке. Например, угол – 60° будет выглядеть так:

    Итак, мы можем откладывать и положительные, и отрицательные углы, а также углы, большие 360°. Вообще в тригонометрии угол может быть равен любому действительному числу. На единичной окружности можно отложить углы величиной 1000°, 1000000° и (– 999999999°) и любые другие, самые большие и самые малые углы. В этом смысле единичная окружность схожа с координатной прямой. Разница лишь в том, что на прямой разным числам всегда соответствуют разные точки, а на окружности разным углам могут соответствовать одни и те же точки.

    Ещё раз отметим, что один полный оборот равен 360°. Если отложить на окружности произвольную точку А, которой соответствует угол α, а потом добавить к α ещё 360°, то мы попадем в ту же самую точку:

    С точки зрения тригонометрии те углы поворота, которые соответствуют одной точке на единичной окружности, равны друг другу. Поэтому можно записать формулу:

    Естественно, при вычитании 360° из угла мы тоже совершим полный поворот, только по часовой стрелке, поэтому верна и другая запись:

    Угол, не изменится и в том случае, если мы совершим не один, а два полных оборота, то есть добавим к нему 2•360° = 720°. Можно добавлять к углу два, три, четыре полных поворота, но он не изменится от этого. Обозначим буквой n количество оборотов, которые мы добавляем к углу. Естественно, что n – целое число. Справедливой будет формула:

    Например, верны следующие равенства:

    15° + 3•360° = 15° + 1080° = 1095°

    100° + 10•360° = 100° + 3600° = 3700°

    1000° = 1000° – 2•360° = 1000° – 720° = 280°

    Очевидно, что любой точке на окружности соответствует какой-то угол α из промежутка 0 ≤ α 1 5

    💥 Видео

    Как видеть тангенс? Тангенс угла с помощью единичного круга.Скачать

    Как видеть тангенс? Тангенс угла с помощью единичного круга.

    Точки на числовой окружностиСкачать

    Точки на числовой окружности

    Числовая окружностьСкачать

    Числовая окружность

    Точка O – центр окружности, на которой лежат точки ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

    Точка O – центр окружности, на которой лежат точки ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

    №1011. Ответьте на вопросы: а) Может ли абсцисса точки единичной полуокружности иметь значения 0,3Скачать

    №1011. Ответьте на вопросы: а) Может ли абсцисса точки единичной полуокружности иметь значения 0,3

    46 Где расположены на единичной окружности точки π/3,π/6 и другиеСкачать

    46 Где расположены на единичной окружности точки π/3,π/6 и другие

    "Парадоксальное" среднее расстояние между точками на окружностиСкачать

    "Парадоксальное" среднее расстояние между точками на окружности

    43 Координаты точки единичной окружностиСкачать

    43 Координаты точки единичной окружности
    Поделиться или сохранить к себе: