1. Найти по формулам длину биссектрисы из прямого угла на гипотенузу:
L — биссектриса, отрезок ME , исходящий из прямого угла (90 град)
a, b — катеты прямоугольного треугольника
с — гипотенуза
α — угол прилежащий к гипотенузе
Формула длины биссектрисы через катеты, ( L ):
Формула длины биссектрисы через гипотенузу и угол, ( L ):
2. Найти по формулам длину биссектрисы из острого угла на катет:
L — биссектриса, отрезок ME , исходящий из острого угла
a, b — катеты прямоугольного треугольника
с — гипотенуза
α , β — углы прилежащие к гипотенузе
Формулы длины биссектрисы через катет и угол, ( L ):
Формула длины биссектрисы через катет и гипотенузу, ( L ):
Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Свойства биссектрисы прямоугольного треугольника
В данной публикации мы рассмотрим основные свойства биссектрисы прямоугольного треугольника, проведенной из прямого и острого углов, а также разберем примеры решения задач по данной теме.
Примечание: напомним, что прямоугольным называется треугольник, в котором один из углов прямой (т.е. равен 90°), а два остальных – острые ( Содержание скрыть
Видео:Найдите биссектрису прямоугольного треугольника с катетами 3 и 5 ★ Как решать?Скачать

Свойства биссектрисы прямоугольного треугольника
Свойство 1
Если в прямоугольном треугольнике известны катеты, то длину биссектрисы, проведенной из прямого угла к гипотенузе, можно вычислить по формуле:
Свойство 2
Длину биссектрисы в прямоугольном треугольнике, проведенную из острого угла к противолежащему катету, можно вычислить по формуле:
- la – биссектриса к катету;
- α – острый угол, из которого проведена биссектриса.
Также можно использовать другую формулу, если известны все три стороны треугольника:
Примечания:
- Прямоугольный треугольник может быть равнобедренным, и в этом случае к нему, в т.ч., применимы свойства биссектрисы равнобедренного треугольника.
- Общие свойства биссектрисы в любом треугольнике представлены в нашей публикации – “Определение и свойства биссектрисы угла треугольника”.
Видео:Задача по геометрии на прямоугольный треугольник и теорему Пифагора из реального ОГЭ по математикеСкачать

Примеры задач
Задача 1
Найдите длину биссектрисы, которая проведена к гипотенузе прямоугольного треугольника, если известно, что его катеты равны 21 и 28 см.
Решение
Воспользуемся формулой, приведенной в Свойстве 1, подставив в нее известные значения:
Задача 2
Катеты прямоугольного треугольника равны 9 и 12 см. Вычислите длину биссектрисы, проведенной к катету с наименьшей длиной.
Решение
Пример катеты за “a” (9 см) и “b” (12 см).
Для начала найдем гипотенузу треугольника (c), воспользовавшись теоремой Пифагора, согласно которой квадрат гипотенузы равняется сумме квадратов катетов:
c 2 = a 2 + b 2 = 9 2 + 12 2 = 225.
Следовательно, c = 15 см.
Теперь мы можем применить формулу, рассмотренную в Свойстве 2 для нахождения длины биссектрисы:
Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Формулы для вычисления длины биссектрисы треугольника
Формулы для вычисления длины биссектрисы треугольника
Можно вывести различные формулы, с помощью которых можно вычислить длину биссектрисы треугольника, если известны:
· длины прилежащих сторон и угол между ними
· длины прилежащих сторон и отрезки, на которые биссектриса разбивает противолежащую сторону
· длины трех сторон треугольника.
Докажем первую из формул.
Задача 1. Вычислить длину биссектрисы треугольника, если известны длинны двух прилежащих сторон треугольника и угол между ними.
Решение. Пусть в треугольнике АВС известно, что

Обозначим биссектрису AD через la .

Используя формулу синуса двойного угла, получаем:

Ответ: 
Выражение 

биссектриса треугольника равна произведению среднего гармонического прилежащих сторон треугольника на косинус половинного угла между ними.
Доказательство остальных формул можно посмотреть, например, в методическом пособии «Опорные задачи по планиметрии».
Задача 2. Вычислите биссектрису треугольника ABC, проведённую из вершины А, если ВС = 18, АС = 15, АВ = 12.
Решение. Воспользуемся формулой для вычисления биссектрисы угла, если известны три стороны треугольника:
Задача 3. Определить площадь треугольника, если две его стороны равны 35 см и 14 см, а биссектриса угла между ними содержит 12 см.
Пусть в треугольнике АВС АС=35, АВ=14, AD — биссектриса, AD=12.

Вычислим 



Далее по формуле синуса двойного угла вычисляем

Для вычисления площади треугольника воспользуемся формулой 
Задача 4. . В равнобедренном треугольнике BCD с основанием BD
проведена биссектриса BE. Известно, что СЕ = 20 и DE = 10. Найдите BE.
Используя свойство биссектрисы угла треугольника (урок 4), получаем


Таким образом, нам известны длины двух прилежащих сторон и отрезки, на которые биссектриса разбивает противолежащую сторону, поэтому
Ответ :
Задачи для самостоятельного решения
1. Дан треугольник со сторонами 4, 8, 9. Найти длину биссектрисы, проведенной к большей стороне.
2. В треугольнике ABC известно, что АВ = 10, АС = 15, 
3. Катеты прямоугольного треугольника равны 6 и 8. Найдите биссектрису треугольника, проведённую из вершины прямого угла.
4. В равнобедренном треугольнике BCD с основанием BD проведена биссектриса BE. Известно, что СЕ = 18 и DE = 12. Найдите BE.
🎦 Видео
7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

Теорема Пифагора для чайников)))Скачать

Высота в прямоугольном треугольнике. 8 класс.Скачать

Высота прямоугольного треугольникаСкачать

Построение биссектрисы в треугольникеСкачать

Катеты и гипотенузаСкачать

Высота в прямоугольном треугольнике. Как найти? Полезная формулаСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Определение длины гипотенузыСкачать

Катеты прямоугольного треугольника равны 3 и 4. Найдите высоту, проведённую к гипотенузеСкачать

№256. Один из углов прямоугольного треугольника равен 60°, а сумма гипотенузы и меньшего из катетовСкачать

Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать

Нахождение стороны прямоугольного треугольникаСкачать

Найдите гипотенузу равнобедренного прямоугольного треугольника, площадь которого равна 1Скачать

Свойство биссектрисы треугольника с доказательствомСкачать

Площадь прямоугольного треугольника. Как найти площадь прямоугольного треугольника?Скачать




























