В этой статье популярно объяснено, как найти радиус окружности, вписанной в квадрат. Теоретический материал поможет вам разобраться во всех связанных с темой нюансах. Прочитав этот текст, вы с легкостью сможете решать подобные задачи в дальнейшем.
- Базовая теория
- Радиус вписанной в квадрат окружности
- Радиусы описанной и вписанной окружностей в квадрат
- Окружность вписанная в квадрат
- Окружность описанная около квадрата
- Нахождения величины радиуса описанной окружности около квадрата при известной величине радиуса вписанной окружности.
- Как решать задачи с вписанной окружностью в квадрат
- 📽️ Видео
Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать
Базовая теория
Перед тем как перейти непосредственно к нахождению радиуса вписанной в квадрат окружности, стоит ознакомиться с некоторыми фундаментальными понятиями. Возможно, они могут показаться слишком простыми и очевидными, но они необходимы для понимания вопроса.
Квадрат — четырехугольник, все стороны которого равны между собой, а градусная мера всех углов составляет 90 градусов.
Окружность — двумерная замкнутая кривая, расположенная на определенном расстоянии от некоторой точки. Отрезок, один конец которого лежит в центре окружности, а второй — на любой ее поверхности, называется радиусом.
С терминами ознакомились, остался лишь главный вопрос. Нам нужно найти радиус окружности, вписанной в квадрат. Но что означает последняя фраза? Здесь тоже ничего сложного. Если все стороны некоторого многоугольника касаются кривой линии, то ее считают вписанной в этот многоугольник.
Видео:Вписанная и описанная окружность - от bezbotvyСкачать
Радиус вписанной в квадрат окружности
С теоретическим материалом закончили. Теперь необходимо разобраться в том, как применить его на практике. Воспользуемся для этого рисунком.
Радиус, очевидно, перпендикулярен AB. Это значит, что в то же время он параллелен AD и BC. Грубо говоря, можно «наложить» его на сторону квадрата, чтобы далее определить длину. Как видно, ей будет соответствовать отрезок BK.
Один из его концов r лежит в центре окружности, которая является точкой пересечения диагоналей. Последние по одному из своих свойств делят друг друга пополам. Используя теорему Пифагора, можно доказать, что они также делят и сторону фигуры на две одинаковых части.
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Радиусы описанной и вписанной окружностей в квадрат
Видео:Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.Скачать
Окружность вписанная в квадрат
Чтобы формула нахождения радиуса вписанной окружности в квадрат r была правильно рассчитана, необходимо изначально вспомнить какими свойствами обладает данная фигура. У квадрата:
- все углы прямые, то есть, равны 90°;
- все стороны, как и углы, равны;
- диагонали равны, точкой пересечения бьются строго пополам и пересекаются под углом 90°.
При этом вписанная в выпуклый многоугольник окружность обязательно касается всех его сторон. Обозначим квадрат ABCD, точку пресечения его диагоналей O. Как видно на рисунке 1, пересечение линий АС и ВD дают равнобедренный треугольник АОВ, в котором стороны АО=ОВ, углы ОАВ=АВО=45°, а угол АОВ=90°. Тогда радиусом вписанной окружности в квадрат будет не что иное, как высота ОЕ полученного равнобедренного треугольника АОВ.
Если предположить, что сторона квадрата равна у, то формула нахождения радиуса вписанной окружности в квадрат будет выглядеть следующим образом:
Объяснение: в равнобедренном треугольнике АОВ высота ОЕ или радиус r делят основание АВ пополам (свойства), образовывая при этом прямоугольный треугольник с прямым угол ОЕВ. В маленьком треугольнике ЕВО основание ОВ образует со сторонами ОЕ и ЕВ углы по 45°. Значит треугольник ЕВО еще и равнобедренный. Стороны ОЕ и ЕВ равны.
Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Окружность описанная около квадрата
Вокруг квадрата также можно описать окружность. В этом случае каждая вершина фигуры будет касаться окружности. Следующая формула нахождения радиуса описанной окружности около квадрата будет находиться еще проще. В этом случае R описанной окружности будет равен половине диагонали квадрата. В буквенном виде формула выглядит так (рисунок 2):
Объяснение: после проведения диагоналей ABCD образовались два одинаковых прямоугольных треугольника АВС = CDA. Рассмотрим один из них. В треугольнике CAD:
- угол CDA=90°;
- стороны AD=CD. Признак равнобедренного треугольника;
- угол DAC равен ACD. Они равны по 45°.
Чтобы найти в этом прямоугольном треугольнике гипотенузу АС, необходимо воспользоваться теоремой Пифагора:
, отсюда
Поскольку окружность касается вершин квадрата, а точка пересечения его диагоналей является центром описанной окружности (свойства), то отрезок ОС и будет радиусом окружности. Он является половинкой гипотенузы. Это утверждение вытекает из свойств равнобедренного треугольника или свойств диагоналей квадрата. Потому формула нахождения радиуса описанной окружности около квадрата в нашем случае имеет следующий вид:
Поскольку AD=CD, а свойства квадратного корня позволяют вынести одно из подкоренных выражений, тогда формула приобретает вид:
Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать
Нахождения величины радиуса описанной окружности около квадрата при известной величине радиуса вписанной окружности.
- треугольник ОСЕ – равнобедренный и прямоугольный;
- ОЕ=ЕС=;
- ОЕС=90°;
- ЕОС=ОСЕ=45°;
Найти: ОС=?
Решение: в данном случае задачу можно решить, воспользовавшись либо теоремой Пифагора, либо формулой для R. Второй случай будет проще, поскольку формула для R выведена из теоремы.
Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Как решать задачи с вписанной окружностью в квадрат
Боковая сторона равнобедренного треугольника равна 4. Угол при вершине, противолежащий основанию, равен 120°. Найдите диаметр окружности, описанной около этого треугольника.
Воспользуемся теоремой косинусов:
(здесь a и b — боковые стороны равнобедренного треугольника, c — основание.
Диаметр описанной окружности найдем по обобщенной теореме синусов:
Вместо того, чтобы искать основание треугольника, можно было найти угол при основании. Действительно, сумма углов при основании данного равнобедренного треугольника равна 60°. Эти углы равны, поэтому каждый из них равен 30°. Применяя обобщенную теорему синусов для боковой стороны и противолежащего ей угла, получаем:
Приведем решение Андрея Ларионова.
Угол при основании равен
Следовательно, дуга описанной окружности, на которую он опирается, равна 2 · 30° = 60°. Эту дугу стягивает боковая сторона треугольника.
Хорда, стягивающая дугу в 60°, равна радиусу окружности, поэтому радиус описанной окружности равен боковой стороне треугольника, тогда D = 2 · 4 = 8.
📽️ Видео
Задание 16 ОГЭ по математике. Две окружности одна описана около квадрата, другая вписана в него.Скачать
Задача.Окружность и прямоугольник вписаны в квадрат.Скачать
Окружность вписанная в треугольник и описанная около треугольника.Скачать
Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать
Задание 16 ОГЭ по математике. Окружность описана около квадратаСкачать
ОГЭ Площадь квадрата, описанного около окружности #огэ #огэ2023 #алгебра #огэматематикаСкачать
Сторона квадрата равна 56. Найдите радиус окружности, вписанной в этот квадрат.Скачать
Вписанная и описанная окружности | Лайфхак для запоминанияСкачать
СТОРОНА КВАДРАТА через РАДИУС вписанной и описанной окружностейСкачать
Геометрия. ОГЭ по математике. Задание 16Скачать
Урок 1. Вписанная и описанная окружность в квадратСкачать
Задание № 1087 — Геометрия 9 класс (Атанасян)Скачать
Квадрат в окружности или окружность в квадрате #ShortsСкачать