Зубчатое колесо — это основная деталь зубчатой передачи в виде диска с зубьями на цилиндрической или конической поверхности, входящими в зацепление с зубьями другого зубчатого колеса.
Формула расчета числа зубьев зубчатого колеса:
z — количество зубьев зубчатого колеса в мм;
d — диаметр делительной окружности в мм;
m — модуль зубчатого колеса.
Быстро выполнить эту математическую операцию можно с помощью нашей онлайн программы. Для этого необходимо в соответствующее поле ввести исходное значение и нажать кнопку.
На этой странице представлен самый простой онлайн калькулятор расчета числа зубьев зубчатого колеса по простой математической формуле в зависимости от диаметра делительной окружности и числа зубьев. С помощью этого калькулятора вы в один клик сможете выполнить расчет числа зубьев зубчатого колеса.
- Модуль зубьев зубчатого колеса: расчет, стандартные, определение
- Зацепления зубчатые относятся к передачам (подвижным соединениям) и передают движение от двигателя к исполнительным механизмам. К составным частям зубчатых передач относятся зубчатые колеса (цилиндрические, конические), червяки, рейки
- Зубчатые передачи
- Типы зубчатых передач
- Эвольвентное зацепление
- Форма зубьев
- Рис. Характеристики прямозубой цилиндрической передачи передачи (циклоидное зацепление)
- Коррегирование зубчатого зацепления
- Зубчатые передачи с точно заданным межосевым расстоянием
- Зубчатые передачи с изменяемым межосевым расстоянием
- Расчетные формулы для зубчатых передач
- Степени точности зубчатых передач (DIN 3961…..3964)
- Зубчатые передачи стартера
- Модули зубчатых передач стартеров
- Стандарты зубчатых передач США
- Полная высота зуба
- Ножка зуба
- Система обозначений и преобразований
- Расчет наибольшего допустимого давления зубчатых передач
- Величины и единицы измерения для расчета наибольшего допустимого давления
- Коэффициент срока службы ф
- Расчет зубчатого зацепления на изгиб и разрушение зуба
- Коэффициент профиля зуба YFa
- Скоростной фактор fv
- Примерный расчет элементов зубчатого колеса
- Вычерчивание контура зуба
- Определение основных геометрических параметров зубчатых колес
- Модуль зуба – Модуль шестерни. Формулы расчёта
- Как определить модуль шестерни с прямым и косым зубом
- Модуль зубчатого колеса – это… Что такое Модуль зубчатого колеса?
- Смотреть что такое “Модуль зубчатого колеса” в других словарях:
- Модуль зуба что такое
- Модуль зубьев зубчатого колеса
- Что такое модуль зубчатого колеса
- Что же такое модуль шестерни?
- Формула расчета параметров прямозубой передачи
- Исходные данные и замеры
- Результаты расчетов
- Расчет параметров колеса и шестерни косозубой передачи
- Расчёт модулей зубчатых колёс
- Как рассчитать число зубьев на окружности
- 🎦 Видео
Видео:Модуль шестерни и параметры зубчатого колесаСкачать
Модуль зубьев зубчатого колеса: расчет, стандартные, определение
Видео:Что такое МОДУЛЬ шестерни? Ты ТОЧНО поймешь!Скачать
Зацепления зубчатые относятся к передачам (подвижным соединениям) и передают движение от двигателя к исполнительным механизмам. К составным частям зубчатых передач относятся зубчатые колеса (цилиндрические, конические), червяки, рейки
- Диаметр делительной окружностиd является одним из основных параметров, по которому производят расчет зубчатого колеса:
- d = m × z,
- где z – число зубьев;
- m – модуль.
- Модуль зацепленияm – это часть диаметра делительной окружности, приходящейся на один зуб:
- m = t / π,
- где t – шаг зацепления.
- Высота зуба:
- h = ha + hf,
- где ha – высота головки зуба, ha = m; hf – высота ножки зуба, hf = 1,25m.
- Диаметр окружности выступов зубьев:
- da = d + 2ha = m(z + 2).
- Диаметр окружности впадин:
- df = d – 2hf = m(z – 2,5).
- Служит для передачи вращения при параллельных осях валов.
- ГОСТ 9563-60 предусматривает два ряда модулей m= 0,05…100 мм.
- Ряд 1: … 0,5; 0,6; 0,8; 1; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16 …
- Ряд 2: … 0,55; 0,7; 0,9; 1,125; 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 7; 9; 11; 14 …
Примечание. Ряд 1 следует предпочитать ряду 2.
- Служит для преобразования вращательного движения в возвратно-поступательное.
- ГОСТ 9563-60 предусматривает два ряда модулей m= 0,05…100 мм.
- Ряд 1: … 0,5; 0,6; 0,8; 1; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16 …
- Ряд 2: … 0,55; 0,7; 0,9; 1,125; 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 7; 9; 11; 14 …
Примечание. Ряд 1 следует предпочитать ряду 2.
- Служит для передачи вращательного движения между валами со скрещивающимися осями.
- ГОСТ 19672-74 устанавливает два ряда значений модулей m (мм).
- Ряд 1: … 1; 1,25; 1,6; 2; 2,5; 3,15; 4; 5; 6,3; 8; 10 …
- Ряд 2: … 1,5; 3; 3,5; 6; 7 …
Примечание. Ряд 1 следует предпочитать ряду 2.
- Служит для передачи вращения при пересекающихся осях валов.
- ГОСТ 9563-60 предусматривает два ряда модулей m= 0,05…100 мм.
- Ряд 1: … 0,5; 0,6; 0,8; 1; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16 …
- Ряд 2: … 0,55; 0,7; 0,9; 1,125; 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 7; 9; 11; 14 …
Примечание. Ряд 1 следует предпочитать ряду 2.
Видео:Кратко о передаточном числе в зубчатой передаче.Скачать
Зубчатые передачи
Зубчатые передачи — это механизм или часть механизма механической передачи, в состав которого входят зубчатые колёса. Зубчатые передачи служат для того, чтобы непрерывно передавать силу и крутящий момент двух валов, расположение которых определяет тип имеющейся зубчатой передачи. Вот о том, что представляют зубчатые передачи, мы и поговорим в этой статье.
Типы зубчатых передач
Эвольвентное зацепление
Все прямозубые цилиндрические передачи с одинаковым модулем зацепления могут изготавливаться на одном оборудовании, независимо от количества зубьев и размеров головки.
Модули зацепления цилиндрических и конических зубчатых колес стандартизированы по DIN 780; модули зацепления червячных передач по DIN 780; модули шлицевых соединений по DIN 5480; модули зубчатого зацепления нормального профиля для шестерен со спиральными зубьями по DIN 780.
Форма зубьев
Для прямозубых цилиндрических передач форма зубьев определяется DIN 867, DIN 58400; конических передач — DIN 3971; червячных передач — DIN 3975; шлицевых соединений — DIN 5480 (см. рис. «Прямые и косые зубья (наружное зацепление)» ).
Форма зубьев гипоидных передач регламентируется стандартом DIN 867. В дополнение к стандартным углам зацепления (20° для зубчатых передач и 30° для шлицевых соединений) применяются также и углы зацепления 12°, 14°30 15°, 17°30′| 22°30′ и 25°.
Рис. Характеристики прямозубой цилиндрической передачи передачи (циклоидное зацепление)
Коррегирование зубчатого зацепления
Коррегирование зубчатого зацепления (изменение высоты головки зуба (см. рис. «Коррегирование зубчатого зацепления прямозубой цилиндрической передачи (циклоидное зацепление)» ) применяется для предотвращения подрезания у шестерен с малым количеством зубьев. Оно позволяет увеличить прочность ножки зуба и точно обеспечить межосевое расстояние.
Зубчатые передачи с точно заданным межосевым расстоянием
У зубчатых пар с точно заданным межосевым расстоянием изменение высоты головки зуба для шестерни и зубчатого колеса производится на одинаковую величину, но в противоположных направлениях, что позволяет сохранить межосевое расстояние неизменным. Такое решение применяется в гипоидных и косозубых передачах.
Зубчатые передачи с изменяемым межосевым расстоянием
Изменение высоты головки зуба для шестерни и зубчатого колеса производится независимо друг от друга, поэтому межосевое расстояние передачи может изменяться. Допускаемые отклонения линейных размеров зубчатых передач регламентированы. Для прямозубых цилиндрических передач — DIN 3960, DIN 58405; для конических передач — DIN 3971; червячных передач — DIN 3975.
Подставляя jη = 0 в приведенные ниже формулы, рассчитывают параметры зацепления без зазора между зубьями. Для определения зазора между зубьями допускаемые отклонения толщины зубьев и зоны их зацепления принимают в соответствии со стандартами DIN 3967 и DIN 58405 в зависимости от требуемой степени точности зубчатой передачи.
Следует отметить, что не обязательно стремиться к нулевому зазору между зубьями. Для компенсации имеющихся отклонений размеров зубьев и сборки шестерен достаточно иметь минимальный зазор, который, кроме того, предотвращает возможность заклинивания зубчатых колес.
Допускаемые отклонения других расчетных параметров (зазор между ножками двух смежных зубьев, межцентровое расстояние) приведены в стандартах DIN 3963, DIN 58405, DIN 3962 Т2, DIN 3967, DIN 3964.
Расчетные формулы для зубчатых передач
Степени точности зубчатых передач (DIN 3961…..3964)
Зубчатые передачи стартера
Система допускаемых отклонений для зубчатых передач по «Стандарту межосевых расстояний» (DIN 3961) применяется в силовых приводах, где требуемый зазор между зубьями обеспечивается отрицательными допусками толщины зубьев. Эта система неприменима для зубчатых передач автомобильных стартеров, поскольку они работают со значительно большими зазорами между зубьями, которые обеспечиваются увеличением межосевого расстояния.
Модули зубчатых передач стартеров
Большой крутящий момент, необходимый для пуска двигателя, требует применения зубчатой передачи с большим передаточным отношением (i = 10-20). Поэтому шестерня стартера имеет малое количество зубьев (z = 9-11), обычно с положительным смещением.
Для шага зубьев принято следующее обозначение: количество зубьев, равное, например, 9/10, означает нарезку девяти зубьев на заготовке, рассчитанной по диаметру на 10 зубьев, и соответствует смещению +0,5. При этом допускаются небольшие отклонения величины коэффициента х.
(Это обозначение нельзя смешивать с обозначением Р 8/10, приведенным ниже).
Стандарты зубчатых передач США
- Вместо модуля для стандартизации зубчатых передач в США используется показатель количества зубьев на 1 дюйм (25,4 мм) диаметра делительной окружности или диаметральный модуль (питч) (Р):
- Р = z/d = z/(z • m/25,4) =25,4/m
- Для перевода стандарта США в европейский стандарт служит зависимость:
- m = 25,4 мм / P
- Размещение зубьев в пределах диаметрального модуля называется окружным шагом зацепления (CP):
- CP = (25,4 мм / P) π.
- Табл. Стандарты зубчатых передач
Полная высота зуба
В стандартах США полная высота зуба обозначается как высота головки ha = т, что соответствует величине т в стандартах Германии.
Ножка зуба
- Обозначается так же, как и полная высота зуба, но расчет головки зуба основывается на использовании своего модуля. Пример обозначения:
- Обозначение (пример): Р 5 /7
- Р = 7 для расчета головки зуба,
- Р = 5 для расчета других параметров.
Система обозначений и преобразований
- Диаметр окружности выступов: OD = da.
- Диаметр делительной окружности: PD = N/P = d (в дюймах) или PD = Nm = d (в мм).
- Диаметр окружности впадин: RD = df
- Начальный диаметр:
- LD =(N+2x) / P (в дюймах)
- или
- LD= (N+2x)·m (в мм).
- LD ≈ dw,
- где dw — диаметральный модуль.
Расчет наибольшего допустимого давления зубчатых передач
Ниже приведены расчетные формулы, которые могут применяться вместо стандартного расчета DIN 3990 «Расчет несущей способности зубчатых передач». Эти зависимости применимы для расчета нагрузки трансмиссионных зубчатых пар, работающих в стандартном режиме.
Величины и единицы измерения для расчета наибольшего допустимого давления
Необходимое сопротивление усталостному выкрашиванию и изнашиванию металла для шестерни (колесо 1) вследствие высокого контактного давления достигается, если величина оценки сопротивления выкрашиванию Sw равна или больше 1.
В случае зубчатого зацепления с z1 Читайте также: Шлифование дерева: станки, инструмент, технологии
При оценке сопротивления выкрашиванию металла зубчатых колес Sw расчетный срок их службы может изменяться за счет коэффициента срока службы ф.
Коэффициент допустимого контактного давления kperm в H/mm2 для срока службы Lh = 5000 ч
Прочностные характеристики материалов для изготовления зубчатых передач приведены в табл. «Параметры материалов зубчатых передач«.
- При пульсирующей нагрузке для предела усталостной прочности (NL ⩾ 3*106). В случае знакопеременной нагрузки следует применять коэффициент YL
- В пределах усталостной прочности в течение срока службы напряжения изгиба увеличиваются на коэффициент Ynt в зависимости от количества циклов нагрузки NL.
Коэффициент срока службы ф
- Коэффициент срока службы используется для корректирования приведенных в верхней таблице значений коэффициента допустимого контактного давления kperm (рассчитанного на срок службы Lh = 5000 ч) для различной расчетной продолжительности работы зубчатой передачи.
Необходимая величина сопротивления разрушению зуба обеспечивается при SF ⩾ 1 для шестерни (колесо 1).
Если шестерня изготовлена из более прочного материала, чем зубчатое колесо 2, следует также произвести проверочный расчет зубчатого колеса на изгибающие нагрузки.
Расчет зубчатого зацепления на изгиб и разрушение зуба
Коэффициент профиля зуба YFa
Скоростной фактор fv
[1] Оценка действительна для А = 6 (средний уровень точности).
В следующей статье я расскажу об электрических свойствах материалов.
Видео:№1110. Расстояние между серединами зубьев зубчатого колеса, измеренное по дуге окружности, равноСкачать
Примерный расчет элементов зубчатого колеса
Длина всякой окружности равна ΠD; следовательно, длина начальной окружности зубчатого колеса будет выражена формулой Πd,.
Шагом t зацепления называется длина дуги начальной окружности между обращенными в одну сторону (левыми или правыми) профилями двух смежных зубьев см 517, б.
Если размер этой дуги взять столько раз, сколько имеется зубьев у колеса, т. е. z раз, то также получим длину начальной окружности; следовательно,
Отношение шага t зацепления к числу Π называется модулем зацепления, который обозначают буквой m, т. е.
Модуль выражается в миллиметрах. Подставив это обозначение в формулу для d, получим.
Следовательно, модуль можно назвать длиной, приходящейся по диаметру начальной окружности на один зуб колеса. Диаметр выступов равен диаметру начальной окружности плюс две высоты головки зуба (фиг. 517, б) т.е.
Высоту h’ головки зуба принимают равной модулю, т. е. h’ = m. Выразим через модуль правую часть формулы:
- De = mz + 2m = m (z + 2) следовательно
- m = De : (z +2)
Из фиг. 517,б видно также, что диаметр окружности впадин равен диаметру начальной окружности минус две высоты ножки зуба, т. е.
- Di = d — 2h»
- Высоту h» ножки зуба для цилиндрических зубчатых колес принимают равной 1,25 модуля: h’ = 1,25m. Выразив через модуль правую часть формулы для Di получим
- Di = mz — 2 × 1,25m = mz — 2,5m или
- Di = m (z — 2,5m)
- Вся высота зуба h = h’ + h» т.е
- h = 1m + 1,25m = 2,25m
- Следовательно, высота головки зуба относится к высоте ножки зуба как 1 : 1,25 или как 4 : 5.
Толщину зуба s для необработанных литых зубьев принимают приблизительно равной 1,53m, а для обработанных на станках зубьев (например, фрезерованных) — равной приблизительно половине шага t зацепления, т. е. 1,57m.
Зная, что шаг t зацепления равен толщине s зуба плюс ширина sв впадины (t = s + sв) (Величину шага t определяем по формуле t/Π = m или t = Πm ), заключаем, что ширина впадины для колес с литыми необработанными зубьями.
- sв = 3,14m — 1,53m = 1,61m A для колес с обработанными зубьями.
- sв = 3,14m — 1,57m = 1,57m
Конструктивное оформление остальной части колеса зависит от усилий, которые испытывает колесо во время работы, от формы деталей, соприкасающихся с данным колесом, и др. Подробные расчеты размеров всех элементов зубчатого колеса даются в курсе «Детали машин». Для выполнения графического изображения зубчатых колес можно принять следующие приблизительные соотношения между их элементами:
Толщина обода e = t/2
Диаметр отверстия для вала Dв ≈ 1/в De Диаметр ступицы Dcm = 2Dв Длина зуба (т. е. толщина зубчатого венца колеса) b = (2 ÷ 3) t Толщина диска К = 1/3b Длина ступицы L = 1,5Dв : 2,5Dв
Размеры t1 и b шпоночного паза берутся из таблицы №26. После определения числовых величин модуля зацепления и диаметра отверстия для вала необходимо полученные размеры согласовать с ГОСТ 9563-60 (см таблицу №42) на модули и на нормальные линейные размеры по ГОСТ 6636-60 (таблица №43).
Модули (согласно ГОСТ 9563-60) Таблица №42.
Нормальные линейные размеры. Таблица №43. (Выдержка из ГОСТ 6636-60)
Если они отличаются от табличных значений, надо взять ближайшие большие табличные значения и пересчитать все величины, зависящие от вновь выбранного модуля или диаметра отверстия.
Вычерчивание контура зуба
Видео:Длина окружности. Математика 6 класс.Скачать
Определение основных геометрических параметров зубчатых колес
- Лабораторная работа 10
- Цель работы — ознакомиться с практическими методами определения основных параметров зубчатых колес.
- Краткие теоретические сведения
Основными параметрами зубчатого колеса с эвольвентным профилем зубьев являются: модуль т, число зубьев z, угол зацепления а, величина смещения инструментальной рейки при нарезании зубчатого колеса.
Число зубьев, диаметры окружностей вершин и впадин зубьев можно измерить непосредственно, остальные параметры вычисляют в результате расчета.
Подсчитав число зубьев z, нетрудно определить модуль зацепления, используя свойство эвольвенты: нормаль в любой точке эвольвенты является касательной к основной окружности. Поэтому при охвате нескольких зубьев колеса губками штангенциркуля (размер АВ, рис. 2.5.1) линия АВ будет касательной к основной окружности и нормальной профилям зубьев.
Если отрезок АВ катить по основной окружности, то по свойству эвольвенты точка А придет в точку А0, точка В — в точку В0 и точка D — в точку D0. Тогда
Таким образом, измерив вначале длину общей нормали Wzn (мм), соответствующей числу зубьев z„, а затем размер Wzn+ь охватив губками штангенциркуля на один зуб больше, рь
шаг по основной окружности — определим как разность двух измерений:
Это выражение действительно только в том случае, когда губки штангенциркуля касаются эвольвентной части профиля зуба.
Рис. 2.5.1. Схема замера
Чтобы не возникло кромочного контакта, необходимо правильно выбрать zn (табл. 2.5.1).
Число зубьев колеса | 12-18 | 19-27 | 28-36 | 37-45 | 46-54 | 55-63 | 64-72 | 73-81 |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Модуль зацепления определим по формуле
Полученное значение модуля сопоставим со стандартным значением (табл. 2.5.2) и примем его ближайшее значение.
т, мм | 2,00 | 2,25 | 2,50 | 2,75 | 3,00 | 3,25 |
Рь, мм | 5,904 | 6,642 | 7,380 | 8,818 | 8,856 | 9,954 |
т, мм | 3,50 | 3,75 | 4,00 | 4,50 | 5,00 | 5,50 |
Рь, мм | 10,33 | 11,07 | 11,808 | 13,28 | 14,76 | 16,84 |
По уточненному значению модуля рассчитаем шаги зацепления по делительной и основной окружностям.
Для определения величины смещения при нарезании зубчатого колеса инструментальной рейкой необходимо измерить толщину зуба по основной окружности, сопоставить результат с расчетным значением той же толщины зуба для колеса, нарезанного без смещения, и найти коэффициент смещения инструментальной рейки:
где sb = Wzn+l — znpb — толщина зуба по основной окружности данного колеса; sb = mcosa(^ + zinva) — толщина зуба по основной окружности зубчатого колеса, нарезанного при х = 0; a = 20°; inv 20° = 0,0149.
При проведении обмера зубчатых колес необходимо измерить также диаметры окружностей выступов da и впадин df.
Если число зубьев шестерни z четное, то оба диаметра могут быть непосредственно измерены штангенциркулем (рис. 2.5.2, а) При нечетном числе зубьев измерение проводится по схеме, изображенной на рис. 2.5.2, б.
Рис. 2.5.2. Определение диаметров при четном (а) и нечетном (б) числе зубьев
Для определения диаметра окружности выступов измеряется диаметр отверстия шестерни ((/0Тв) и размер//’. Тогда диаметр окружности выступов
Аналогично измеряется диаметр окружности впадин:
Зная диаметр окружности выступов, можно определить коэффициент высоты зуба нулевого колеса:
Зная диаметр окружности выступов, можно определить коэффициент высоты зуба нулевого колеса:
Для проведения этой работы необходимо иметь набор зубчатых колес разных модулей и с разным количеством зубьев и измерительный инструмент — штангенциркуль.
Порядок выполнения работы
- 1. Подсчитать число зубьев колеса z.
- 2. По табл. 2.5.1 определить число зубьев z„, которые следует охватить штангенциркулем.
- 3. Измерить штангенциркулем Wzn и Wzn+ (рис. 2.5.1). Для большей точности обмерять нужно трижды на разных участках зубчатого венца. Окончательные значения Wzn и Wzn+ есть среднеарифметическое трех обмеров. По формуле (2.5.1) определить величину шага рь по основной окружности.
- 4. По формуле (2.5.2) найти модуль зацепления в миллиметрах, округлив его величину до ближайшего стандартного значения согласно табл. 2.5.2. В формуле 2.5.2 угол исходного контура а = 20°.
- 5. Учитывая, что есть колеса с углом а = 15°, выполнить проверочный расчет модуля по выражению
измерив диаметр da окружности вершин.
6. Измерить d/диаметр окружности впадин.
Примечание: da и df при четном числе z измерить штангенциркулем (рис. 2.5.2, а), при нечетном числе — найти в соответствии с рис. 2.5.2, б по формулам:
- 7. Определить:
- а) шаг по делительной окружности
б) диаметр делительной окружности
в) диаметр основной окружности
г) делительную высоту головки зуба
д) делительную высоту ножки зуба
е) коэффициент высоты головки зуба
ж) толщину зуба по основной окружности
- 8. По формуле (2.5.3) рассчитать коэффициент смещения х исходного контура, с которым нарезалось данное колесо.
- 9. Определить толщину зуба по основной окружности:
Контрольные вопросы и задания
- 1. Что такое модуль зубчатого колеса?
- 2. Как определить шаг зубчатого колеса?
- 3. Дайте понятие основной и делительной окружностей.
- 4. Какова зависимость между числом зубьев и диаметром зубчатого колеса?
- 5. Что называется коэффициентом смещения исходного контура?
- 6. Как изменяются основные параметры зубчатого колеса при смещении исходного контура?
- 1. Число зубьев z = …
- 2. Определение шага и модуля зацепления:
Номер измерения | Wz,,+ь мм | Wzn, мм |
Среднее |
* число zn выбирается по табл. 2.5.1.
Шаг зацепления по основной окружности pb = WZfJ+1 — Wzn = … мм.
Модуль т = ——— = … мм.
Модуль, уточненный по табл. 2.5.2, т = … мм.
Шаг зацепления по делительной окружностир = пт = … мм.
Шаг по основной окружности (уточненный)рь=р cos а= … мм.
- 3. Диаметр делительной окружности d = mz= … мм.
- 4. Диаметр основной окружности db = d cos а= … мм.
- 5. Определение действительной толщины зуба по основной окружности sb = Wzn +1 -znpb = … мм.
- 6. Расчет толщины зуба по основной окружности нулевого колеса:
7. Определение коэффициента смещения:
9. Определение диаметров окружностей вершин da и впадин df колеса:
Номер измерения | doiB | Н’ | da | Н» | df | Расчётные формулы при нечётном числе z |
Среднее |
10. Учитывая, что есть колеса с углом зацепления а = 15°, в и. 2 выполнить проверочный расчет модуля по выражению (для нормального колеса)
11. Определение коэффициента высоты головки зуба колеса, зубья которого нарезаны без смещения:
Видео:Расчёт зубчатои передачи. Как расчитать зубчатую передачу.Скачать
Модуль зуба – Модуль шестерни. Формулы расчёта
Шаг зубьев ρ так же, как и длина окружности, включает в себя трансцендентное число π, а потому шаг — также число трансцендентное. Для удобства расчетов и измерения зубчатых колес в качестве основного расчетного параметра принято рациональное число ρ/π, которое называют модулем зубьев т и измеряют в миллиметрах:
Модулем зубьев т называется часть диаметра делительной окружности, приходящаяся на один зуб. Модуль является основной характеристикой размеров зубьев. Для пары зацепляющихся колес модуль должен быть одинаковым. Для обеспечения взаимозаменяемости зубчатых колес и унификации зуборезного инструмента значения m регламентированы стандартом (табл. 8.1).
Высота головки и ножки зуба. Делительная окружность рассекает зуб по высоте на головку ha и ножку hf. Для создания радиального зазора с (см. рис. 8.19)
Для нормального (некорригированного) зацепления ha = m. Длина активной линии зацепления. При вращении зубчатых колес точка зацепления S (см. рис. 8.9) пары зубьев перемещается по линии зацепления NN.
Зацепление профилей начинается в точке S’ пересечения линии зацепления с окружностью вершин колеса и заканчивается в точке S” пересечения линии зацепления с окружностью вершин шестерни. Отрезок S’S” линии зацепления называется длиной активной линии зацепления и обозначается ga.
Длину ga легко определить графически, для чего радиусами окружностей вершин обоих колес отсекают на линии зацепления NN отрезок S’S” и замеряют ga.
Коэффициент торцового перекрытия. Непрерывность работы зубчатой передачи возможна при условии, когда последующая пара зубьев входит в зацепление до выхода предыдущей, т. е. когда обеспечивается перекрытие работы одной пары зубьев другой. Чем больше пар зубьев одновременно находится в зацеплении, тем выше плавность передачи.
Как определить модуль шестерни с прямым и косым зубом
Часто мне задают вопрос: Как определить модуль косозубой шестерни. Один из самых простых вариантов — обкатать фрезой, то есть методом подбора, вставить в шестерню фрезу и посмотреть совпадает ли шаг! Этот вариант подходит для шестернь малого модуля, для более больших шестернь требуются формулы расчёта.
Давайте определим модуль косозубой шестерни. В качестве примера я возьму небольшую шестерню. Данный метод идентичен и для более больших шестернь и больших модулей.
- Есть вот такая шестерня:
- Допустим что фрезы обкатать у нас на данный момент нет и вообще хочется просто посчитать по формуле!
Модуль = De/Z+2. То есть диаметр окружности выступов разделить на количество зубьев плюс 2.
- Измеряем диаметр:
- Диаметр окружности выступов (De) равен 28,6 мм.
- Считаем количество зубьев. Z=25.
- Делительный диаметр (De) делим на количество зубьев 25 +2. Равно 28,6 разделить на 27=1,05925925925926.
- Округляем до ближнего модуля. Получается модуль 1.
- Можно использовать и другой вариант — высота зуба делится на 2,25.
- Я обычно или обкатываю фрезой или считаю по формуле — модуль = De/Z+2.
- Таким образом можно определить модуль как косозубой шестерни, так и шестерни с прямым зубом.
- Поделится, добавить в закладки!
- zuborez.info
Модуль зубчатого колеса – это… Что такое Модуль зубчатого колеса?
Модуль зубчатого колеса геометрический параметр зубчатых колёс.
Для прямозубых цилиндрических зубчатых колёс модуль m равен отношению диаметра делительной окружности dд к числу зубьев z или отношению шага t по делительной окружности к числу: m = dд/z = ts/π.
Для косозубых цилиндрических колёс различают: окружной модуль ms = dд/z = ts/π, нормальный модуль mn = tn/π, осевой модуль ma = tа/π, где ts, tn и ta— соответственно окружной, нормальный и осевой шаги по делительному цилиндру. Значения М. з. к.
стандартизованы, что является основой для стандартизации других параметров зубчатых колёс (геометрические размеры зубчатых колёс выбираются пропорционально модулю) и зуборезного инструмента (см. Зубчатая передача).
Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.
- Модуль высокоэластический
- Модуль расстояния
Смотреть что такое “Модуль зубчатого колеса” в других словарях:
- МОДУЛЬ ЗУБЧАТОГО КОЛЕСА — геометрический параметр, линейная величина, пропорциональная размерам зубчатого колеса. Различают осевой, окружной и нормальный модуль зубчатого колеса … Большой Энциклопедический словарь
- модуль зубчатого колеса — отношение шага зубьев колеса (расстояние между соответствующими точками соседних зубьев, измеренное по дуге окружности) к числу π. Значения модуля зубчатого колеса стандартизованы. Геометрические размеры зубчатых колёс выбираются пропорционально… … Энциклопедический словарь
- нормальный модуль зубьев конического зубчатого колеса — (mn) нормальный модуль Линейная величина, в раз меньшая нормального шага зубьев конического зубчатого колеса. Примечания 1. Различают нормальные модули: внешний (mne), средний (mnm), внутренний (mni) и др. (mnx) делительные; внешний (mnwe),… … Справочник технического переводчика
- нормальный модуль цилиндрического зубчатого колеса — (mn) модуль Делительный нормальный модуль зубьев цилиндрического зубчатого колеса, принимаемый в качестве расчетного и равный модулю нормального исходного контура. Примечание В случаях, исключающих возможность возникновения недоразумений, индекс… … Справочник технического переводчика
- окружной модуль зубьев конического зубчатого колеса — (mt) окружной модуль Линейная величина, в раз меньшая окружного шага зубьев конического зубчатого колеса. Примечание Различают окружные модули: внешний (mte), средний (mtm), внутренний (mti) и др. (mtx) делительные; внешний (mtwe), средний (mtwm) … Справочник технического переводчика
- расчетный модуль конического зубчатого колеса — расчетный модуль Окружной или нормальный делительный модуль в расчетном сечении. Примечания 1. Расчетный модуль конического зубчатого колеса из семейства сопряженных конических зубчатых колес, форма и размеры зубьев которых определяются парой… … Справочник технического переводчика
- Нормальный модуль цилиндрического зубчатого колеса т n — 2.1.2. Нормальный модуль цилиндрического зубчатого колеса т n Модуль Делительный нормальный модуль зубьев цилиндрического зубчатого колеса, принимаемый в качестве расчетного и равный модулю нормального исходного контура. Примечание. В случаях,… … Словарь-справочник терминов нормативно-технической документации
- Нормальный модуль зубьев конического зубчатого колеса — 67. Нормальный модуль зубьев конического зубчатого колеса Нормальный модуль mn Источник: ГОСТ 19325 73: Передачи зубчатые конические. Термины, определения и обозначения … Словарь-справочник терминов нормативно-технической документации
- Окружной модуль зубьев конического зубчатого колеса — 59. Окружной модуль зубьев конического зубчатого колеса Окружной модуль mt Источник: ГОСТ 19325 73: Передачи зубчатые конические. Термины, определения и обозначения … Словарь-справочник терминов нормативно-технической документации
- Расчетный модуль конического зубчатого колеса — 146. Расчетный модуль конического зубчатого колеса Расчетный модуль Источник: ГОСТ 19325 73: Передачи зубчатые конические. Термины, определения и обозначения оригинал документа … Словарь-справочник терминов нормативно-технической документации
Модуль зуба что такое
Модуль зубьев зубчатого колеса
Зубчатая передача впервые была освоена человеком в глубокой древности. Имя изобретателя осталось скрыто во тьме веков. Первоначально зубчатые передачи имели по шесть зубьев — отсюда и пошло название «шестерня».
За многие тысячелетия технического прогресса передача многократно усовершенствовалась, и сегодня они применяются практически в любом транспортном средстве от велосипеда до космического корабля и подводной лодки.
Используются они также в любом станке и механизме, больше всего шестеренок используется в механических часах.
Что такое модуль зубчатого колеса
Современные шестерни далеко ушли от своих деревянных шестизубых предков, изготавливаемых механиками с помощью воображения и мерной веревочки. Конструкция передач намного усложнилась, тысячекратно возросли скорость вращения и усилия, передаваемые через такие передачи. В связи с этим усложнились и методы их конструирования. Каждую шестеренку характеризует несколько основных параметров
- диаметр;
- число зубьев;
- шаг;
- высота зубца;
- и некоторые другие.
Одним из самых универсальных характеристик является модуль зубчатого колеса. Существует для подвида — основной и торцевой.
Скачать ГОСТ 9563-60
В большинстве расчетов используется основной. Он рассчитывается применительно к делительной окружности и служит одним из важнейших параметров.
- Для расчета этого параметра применяют следующие формулы:
- m=t/π,
- где t — шаг.
- Параметры зубчатых колес
- Модуль зубчатого колеса можно рассчитать и следующим образом:
- m=h/2,25,
- где h — высота зубца.
- И, наконец,
- m=De/(z+2),
- где De — диаметр окружности выступов,а z — число зубьев.
Что же такое модуль шестерни?
это универсальная характеристика зубчатого колеса, связывающая воедино такие его важнейшие параметры, как шаг, высота зуба, число зубов и диаметр окружности выступов. Эта характеристика участвует во всех расчетах, связанных с конструированием систем передач.
Формула расчета параметров прямозубой передачи
Чтобы определить параметры прямозубой шестеренки, потребуется выполнить некоторые предварительные вычисления. Длина начальной окружности равна π×D, где D — ее диаметр.
- Расчет модуля зубчатого колеса
- Шаг зацепления t – это расстояние между смежными зубами, измеренное по начальной окружности. Если это расстояние умножить на число зубов z, то мы должны получить ее длину:
- π×D=t×z,
- проведя преобразование, получим:
- D=(t /π)×z
Если разделить шаг на число пи, мы получим коэффициент, постоянный для данной детали зубчатой передачи. Он и называется модулем зацепления m.
- t/π=m,
- размерность модуля шестерни — миллиметры. Если подставить его в предыдущее выражение, то получится:
- В=m×z;
- выполнив преобразование, находим:
- m=D / z.
- Отсюда вытекает физический смысл модуля зацепления: он представляет собой длину дуги начальной окружности, соответствующей одному зубцу колеса. Диаметр окружности выступов De получается равным
- De=d+2× h’,
- где h’- высота головки.
- Высоту головки приравнивают к m:
- h’=m.
- Проведя математические преобразования с подстановкой, получим:
- De=m×z+2m = m(z+2),
- откуда вытекает:
- m=De/(z+2).
- Диаметр окружности впадин Di соответствует De за вычетом двух высот основания зубца:
- Di=D-2h“,
- где h“- высота ножки зубца.
- Для колес цилиндрического типа h“ приравнивают к значению в 1,25m:
- h’ = 1,25m.
- Устройство зубчатого колеса
- Выполнив подстановку в правой части равенства, имеем:
- Di = m×z-2×1,25m = m×z-2,5m;
- что соответствует формуле:
- Di = m(z-2,5m).
- Полная высота:
- h = h’+h“,
- и если выполнить подстановку, то получим:
- h = 1m+1,25m=2,25m.
- Иначе говоря, головка и ножка зубца относятся друг к другу по высоте как 1:1,25.
- Следующий важный размер, толщину зубца s принимают приблизительно равной:
- для отлитых зубцов: 1,53m:
- для выполненных путем фрезерования-1,57m, или 0,5×t
Поскольку шаг t приравнивается к суммарной толщине зубца s и впадины sв, получаем формулы для ширины впадины
- для отлитых зубцов: sв=πm-1,53m=1,61m:
- для выполненных путем фрезерования- sв= πm-1,57m = 1,57m
Характеристики конструкции оставшейся части зубчатой детали определяются следующими факторами:
- усилия, прикладываемые к детали при эксплуатации;
- конфигурация деталей, взаимодействующих с ней.
Детальные методики исчисления этих параметров приводятся в таких ВУЗовских курсах, как «Детали машин» и других. Модуль шестерни широко используется и в них как один из основных параметров.
Для отображения шестеренок методами инженерной графики используются упрощенные формулы. В инженерных справочниках и государственных стандартов можно найти значения характеристик, рассчитанные для типовых размеров зубчатых колес.
Исходные данные и замеры
На практике перед инженерами часто встает задача определения модуля реально существующей шестерни для ее ремонта или замены. При этом случается и так, что конструкторской документации на эту деталь, как и на весь механизм, в который она входит, обнаружить не удается.
Самый простой метод — метод обкатки. Берут шестерню, для которой характеристики известны. Вставляют ее в зубья тестируемой детали и пробуют обкатать вокруг. Если пара вошла в зацепление — значит их шаг совпадает. Если нет — продолжают подбор. Для косозубой выбирают подходящую по шагу фрезу.
Такой эмпирический метод неплохо срабатывает для зубчатых колес малых размеров.
Для крупных, весящих десятки, а то и сотни килограмм, такой способ физически нереализуем.
Результаты расчетов
- Для более крупных потребуются измерения и вычисления.
- измерить диаметр штангенциркулем;
- сосчитать зубцы;
- разделить диаметр на z+2;
- округлить результат до ближайшего целого числа.
Зубец колеса и его параметры
Данный метод подходит как для прямозубых колес, так и для косозубых.
Расчет параметров колеса и шестерни косозубой передачи
Расчетные формулы для важнейших характеристик шестерни косозубой передачи совпадают с формулами для прямозубой. Существенные различия возникают лишь при прочностных расчетах.
Видео:Как определить шестернюСкачать
Расчёт модулей зубчатых колёс
Перейти к загрузке файла
№ зубчатого колеса | Число зубьев | Модуль, мм | Диаметр делительной окружности, мм | Ширина зубчатого венца, мм |
1 | 18 | 2 | 36 | 52 |
2 | 36 | 2 | 72 | 52 |
3 | 20 | 2 | 40 | 52 |
4 | 50 | 2 | 100 | 52 |
5 | 35 | 2 | 70 | 52 |
6 | 35 | 2 | 70 | 52 |
7 | 20 | 2 | 40 | 65 |
8 | 64 | 2 | 128 | 65 |
9 | 56 | 2 | 112 | 65 |
10 | 28 | 2 | 56 | 65 |
Расчёт на контактную выносливость рабочих поверхностей зубьев
Действующие в передаче контактные напряжения определяют по формуле
где ун — контактные напряжения, МПа; zН — коэффициент, зависящий от угла наклона зубьев, для x=0 применяем zН=1,76; zМ — коэффициент, учитывающий механические свойства материалов сопряжённых колёс, для стальных колёс zМ=275; zе — коэффициент, учитывающий суммарную длину контактных линий:
Коэффициент торцевого перекрытия:
где z1 и z2 — числа зубьев шестерни и колеса, знак «+» принимают для наружного зацепления.
Удельную расчётную окружную силу щHt определяют по формуле
где Pt — исходная окружная сила, Н:
где щHV — удельная окружная динамическая сила, Н/мм,
где V — окружная скорость, м/с; ащ — межосевое расстояние, мм.
Допускаемое контактное напряжение [ун] определяем по формуле:
где — допускаемое контактное напряжение, соответствующее базовому числу циклов перемены напряжений, МПа; kHL — коэффициент долговечности, для зубчатых колёс коробки скоростей станков kHL=1.
- Для стали 45 с улучшением =750 МПа.
- 532,25 МПа ? 750 МПа
- Условие контактной выносливости выполняется.
- Расчёт на изгибную выносливость зубьев
- Действующее в передаче напряжение изгиба сравнивается с допустимыми, с учётом коэффициента долговечности.
- Действующее напряжение изгиба:
Коэффициент yе — учитывает перекрытие зубьев. Для прямозубых колёс применяют yе=1. Коэффициент yв учитывает наклон зуба. Для прямозубых применяют yв=1.
Удельную расчётную окружную силу щFt определяем по формуле
где Pt — расчётная окружная сила в зубчатом зацеплении, Н; bщ — рабочая ширина венца, мм
Окружная сила Pt=2•103•M1/d1, где M1 — крутящий момент, Н•м; d1 — диаметр делительной окружности, мм.
Коэффициент kFa учитывает распределение нагрузки между зубьями. Для прямозубых передач приметаем kFa=1. Коэффициент kFв учитывает распределение нагрузки по ширине венца, можно принять kFв=1.1.
Коэффициент kFv учитывает динамическую нагрузку, возникающую в зацеплении.
где щFV — удельная окружная динамическая сила, Н/мм,
где V — окружная скорость, м/с; ащ — межосевое расстояние, мм; для прямозубых передач д=0.016; коэффициент g =47, учитывает влияние разности шагов зацепления.
Допускаемое изгибное напряжении [уF] определяется по формуле:
где — допускаемое контактное напряжение, соответствующее базовому числу циклов перемены напряжений, МПа; kFL — коэффициент долговечности, для зубчатых колёс коробки скоростей станков kFL=1.
Для стали Для стали 45 с улучшением у‘F=450 МПа, условие изгибной выносливости выполняется.
265.49 МПа ? 450 МПа
Условие на изгибную выносливость выполняется.
Видео:4 5 расчет зубчатого колесаСкачать
Как рассчитать число зубьев на окружности
Классификация передач. По форме различают цилиндрические, конические, реечные, эллиптические, фигурные зубчатые колеса и с неполным числом зубьев. В зависимости от взаимного расположения; зубчатых колес различают зубчатые передачи с внешним и внутренним зацеплением, а также разделяются на открытые и закрытые (рис. 81).
Назначение. Зубчатые передачи относятся к механическим передачам зацепления с непосредственным контактом и применяются для изменения скорости или направления вращения ведомого звена с соответствующим изменением крутящего момента, получения точных перемещений, при необходимости точного соответствия скоростей и положений ведущего и ведомого звеньев в произвольный момент времени. Зубчатая передача состоит из двух колес с зубьями, посредством которых они сцепляются между собой. Вращение ведущего зубчатого колеса преобразуется во вращение ведомого колеса путем нажатия зубьев первого на зубья второго. Меньшее зубчатое колесо передачи называется шестерней, большее — колесом. Зубчатые передачи могут преобразовывать вращательное движение между валами с параллельными, пересекающимися и перекрещивающимися осями.
Рис. 81. Виды зубчатых передач: а – внешнего зацепления прямозубая, б – внешнего зацепления косозубая, в – внутреннего зацепления прямозубая, г – внешнего зацепления реечная, д – внешнего зацепления шевронная, е – коническая прямозубая, ж – коническая косозубая, з – коническая круговая, и – коническая круговая — гипоидная, к – внешнего зацепления винтовая, л – передача с круговыми зубьями, м — планетарная.
Преимущества. Важнейшие: компактность, высокий КПД, постоянство передаточного числа, большая долговечность и надежность в работе, возможность осуществления передачи практически любых мощностей при практически любых скоростях и передаточных отношениях, простота обслуживания. Высокая технологичность, которая обусловлена высокопроизводительным специальным оборудованием и технологиями.
Недостатки. Высокие требования к качеству изготовления и монтажа. Шум при больших скоростях. Концентрация напряжений в эвольвентных передачах при точечном контакте и чувствительность к ошибкам монтажа в передачах с линейным контактом. Поэтому для реализации преимуществ при изготовлении деталей необходимо применять высококачественные материалы и технологии изготовления.
Сферы применения. 3убчатые передачи нашли самое широкое распространение среди механических передач в машинах различных отраслей. Назначение и конструкции зубчатых передач разнообразны. Их применяют во многих приборах и почти во всех машинах, в том числе и самых тяжелых и мощных для передачи мощностей до 65 тыс.кВТ (65МВт), с диаметром колес от долей миллиметра до 6м и более. Окружная скорость зубьев может достигать 270м/с. Передаточные отношения для открытой передачи принимают 10, а для закрытой 25. КПД одной ступени зубчатой передачи при высоком качестве изготовления и монтажа может достигать 0,99.
Геометрический расчет. Передаточное отношение передачи
, (14.1)
где — число зубьев шестерни и колеса соответственно.
Номинальные значения передаточных чисел и зубчатых редукторов общего назначения, выполненных в виде самостоятельных агрегатов стандартизированы:
1-й ряд 1,00; 1,25; 1,60; 2,00; 2,50; 3,15; 4,0; 5,0; 6,3; 8,0; 10,0;12,5.
2-й рад 1,12; 1,40; 1,80; 2,24; 2,80; 3,55; 4,5; 5,6; 7,1; 9,0; 11,2.
При выборе стандартных параметров первый ряд предпочтительнее второго, а принятые значения передаточных чисел не должны отличаться от расчетных не более чем на 3%.
Расстояние между осями зубчатых колес цилиндрической передачи по межосевой линии называется межосевым расстоянием:
, (14.2)
где и — начальные диаметры шестерни и колеса; знак плюс относится к передаче с внешним зацеплением, а минус — к передаче с внутренним зацеплением.
Стандартизированы номинальные значения межосевых расстояний aw, мм:
1-й ряд 40; 50; 63; 80100; 125; 160; 200; 250; 315; 400; 500; 630; 800
2-й ряд — — 71; 98; 112; 140; 180; 225; 280; 355; 450; 560; 710; 900.
Межосевое расстояние цилиндрической зубчатой передачи, равное полусумме делительных диаметров колеса d2 и шестерни при внешнем зацеплении или полуразности при внутреннем зацеплении, называется делительным межосевым расстоянием:
. (14.3)
Делительные диаметры для зубчатых колес прямозубой передачи
для косозубой и шевронной
. (14.5)
где т — модуль зацепления основная характеристика размеров зубчатых и червячных колес. Для обеспечения взаимозаменяемости и унификации инструмента для изготовления модули цилиндрические и конические эвольвентных зубчатых колес стандартизованы: для цилиндрических колес — значения нормальных модулей, для конических — значения окружных делительных модулей в диапазоне 0,05..100мм.
1-й ряд 1,0; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16; 20; 25;
2-й ряд 1,125; 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 7; 9; 11; 14; 18; 22; 28.
Ширина венца цилиндрического зубчатого колеса определяется по одной из формул
, (14.6)
, (14.7)
где — коэффициент ширины зубчатого венца по межосевому расстоянию, а — коэффициент ширины зубчатого венца по диаметру шестерни.
Коэффициенты и связаны зависимостью:
. (14.8)
Значения коэффициентов ширины венца зубчатых колес по межосевому расстоянию выбираются из стандартного ряда: 0,1; 0,125; 0,16; 0,2; 0,250; 0,315; 0,400; 0,500; 0,630; 0,800; 1,000; 1,25 и т. д.
Рис. 82. Обозначения элементов зубчатого зацепления.
Для заданного числа зубьев и , коэффициентов смещения исходного контура и , угла наклона зубьев основные параметры эвольвентных цилиндрических колес внешнего зацепления, показанные на рис 82 в соответствии с ГОСТ 13755-81 определяются по расчетным формулам:
Параметр
Шестерня
Колесо
Диаметр вершин зубьев
Диаметр впадин зубьев
Делительный угол профиля в торцевом сечении
Коэффициент торцевого перекрытия
Рабочая ширина зубчатого венца
Коэффициент осевого перекрытия (при ширине венца )
Основной угол наклона
Кинематический и силовой расчет. Расчетная окружная скорость v цилиндрической передачи:
— шестерни ; (14.9)
— колеса ,
где — угловая скорость зубчатого колеса; п — частота вращения зубчатого колеса; — начальный диаметр цилиндрического зубчатого колеса.
Окружная сила цилиндрической зубчатой передачи Ft
, (14.10)
где — крутящий момент на шестерне.
Сила давления между зубьями в цилиндрической прямозубой передаче
. (14.11)
Составляющие этой силы: в цилиндрических прямозубых (рис. 83) и шевронных передачах — окружная сила , и радиальная сила , в конической прямозубой и цилиндрической косозубой передачах — окружная сила , радиальная сила , и осевая сила Fa.
Радиальная сила в цилиндрической передаче
, (14.12)
Осевая сила, действующая на колесо косозубой цилиндрической передачи
, (14.13)
Критерии работоспособности зубчатых передач. Учитывая виды повреждений критериями работоспособности зубчатых передач являются контактная и изгибная прочность зубьев. Проектный расчет закрытых передач малой и средней твердости выполняется на контактную выносливость. Расчет на изгибную прочность зубьев в этом случае выполняется как проверочный. Для зубчатых колес высокой прочности () размеры передачи определяются из расчета зубьев на изгиб, а проверочный расчет выполняется по контактным напряжениям. Для открытой передачи проектный расчет выполняется из условия предупреждения поломки зуба с учетом износа зубьев, проверочный расчет выполняется из условия обеспечения контактной прочности.
Проектные расчеты зубчатых передач.
Расчет зубьев на контактную прочность выполняют для зацепления в полюсе, так как выкрашивание зубьев начинается у полюсной линии. По зависимости для проектного расчета на контактную прочность зубьев определяется межосевое расстояние
, (14.14)
где — коэффициент для прямозубых передач Ка = 495, а для косозубых Ка= 430, — момент на зубчатом колесе передачи в , — коэффициент неравномерности распределения нагрузки по длине контактных линий в результате погрешностей в зацеплении и деформации зубьев, который определяется по рис. 84; — допускаемое контактное напряжение в МПа.
Рис.84. Коэффициенты неравномерности распределения нагрузки по длине контактных линий для расчета на контактную прочность.
Коэффициент ширины венца по межосевому расстоянию для редукторов принимают равным: для зубчатых колес из улучшенных сталей при несимметричном расположении = 0,315. 0,4; для зубчатых колес из закаленных сталей = 0,25. 0,315; при симметричном расположении зубчатых колес относительно опор = 0,4. 0,5; для передвижных зубчатых колес коробок скоростей = 0,1. 0,2. Принимаются стандартные значения .
Допускаемое контактное напряжение
, (14.15)
где — предел контактной выносливости поверхностей зубьев, соответствующий базовому числу циклов напряжений (табл. 14.1); — коэффициент безопасности; ZR — коэффициент, учитывающий шероховатость сопряженных поверхностей зубьев; Zv — коэффициент, учитывающий окружную скорость передачи; KHL — коэффициент долговечности. Коэффициент безопасности зубчатых колес с однородной структурой материала sH = 1,1; с поверхностным упрочением зубьев sH = 1,2. Коэффициент ZR = 0,9. 1; ZR =1,0 при мкм, ZR =0,95 при мкм и ZR =0,9 при мкм. Коэффициент Zv = 1. 1.16; чем меньше скорость передачи и тверже зубья, тем меньше Zv. При v 350).
При известном межосевом расстоянии ориентировочное значение модуля передачи определяется по зависимости
, (14.27)
где — коэффициент для прямозубой передачи =1400, для косозубой и шевронной =850.
Значение модуля зацепления полученное по формуле (14.27) округляется до ближайшего стандартного значения. После определения значений межосевого расстояния и модуля определяются число зубьев и все геометрические параметры передачи по которым выполняется проверочные расчеты.
Проверочные расчеты зубчатых передач.
Расчет зубьев на контактную прочность выполняется по известным геометрическим параметрам передачи при выбранной степени точности изготовления зубьев колес по зависимости
— для прямозубых передач
; (14.28)
— для косозубых передач
, (14.29)
где , — коэффициент неравномерности распределения нагрузки между зубьями в зависимости от скорости и точности изготовления; — коэффициент динамической нагрузки, возникающей в зацеплении.
Таблица 14.3 Значения коэффициента динамических нагрузок
Степень точности
Твердость поверхностей зубьев
υ, м/с
1
2
4
6
8
10
Примечания: 1. Твердость поверхности зубьев: а) и или и ; б) и . 2. 3начения в числителе относятся к прямозубым передачам, а в знаменателе — к косозубым.
Рис. 87.Коэффициенты неравномерности распределения нагрузки между зубьями : а — для расчета на контактную прочность, b – для расчета на изгибную прочность.
Коэффициент неравномерности распределения нагрузки для прямозубых передач принят КНа = 1, а для косозубых коэффициент определяются по графикам на рис.87. Коэффициент динамической нагрузки определяют по таблице 14.3.
Рис. 87.Коэффициенты неравномерности распределения нагрузки между зубьями : а — для расчета на контактную прочность, b – для расчета на изгибную прочность.
При действии на зубья кратковременных перегрузок выполняется проверка рабочих поверхностей зубьев на контактную прочность по максимальному контактному напряжению:
, (14.30)
где — максимальное расчетное напряжение при перегрузке зубьев максимальным моментом ; — допускаемое максимальное контактное напряжение для зубьев; — расчетное контактное напряжение, вызываемое расчетным моментом и определяемое по формуле (14.27) или (14.28). Для зубьев зубчатых колес и термообработкой нормализацией, улучшением или объемной закалкой с отпуском , где — предел текучести материала зубьев при растяжении; для зубьев с термообработкой — цементация, контурная закалка после нагрева ТВЧ — ; для азотированных зубьев . Расчет зубьев по формуле (14.30) производится раздельно для колеса и для шестерни.
Расчет зубьев на изгибную прочность выполняется по известным геометрическим параметрам передачи при выбранной степени точности изготовления зубьев колес по зависимости
, (14.31)
где — коэффициент учитывающий перекрытие зубьев; — коэффициент наклона зубьев; — коэффициент распределения нагрузки между зубьями; — коэффициент динамической нагрузки, возникающей в зацеплении при работе передачи, — коэффициент ширины венца зубчатого колеса по начальному диаметру шестерни.
При подстановке окружной силы по зависимости (14.10) формула (14.31) преобразуется к виду
.
Коэффициент, учитывающий перекрытие зубьев
.
При приближенных расчетах для для косозубых передач и прямозубых передач принимают .
Коэффициент наклона зубьев для прямозубых передач , для косозубых определяется по зависимости
, (14.32)
при .
Коэффициент неравномерности распределения нагрузки для прямозубых передач принят , а для косозубых коэффициент определяются по графикам на рис.87. Коэффициент динамической нагрузки определяют по таблице 14.4
Таблица 14.4 Значения коэффициента динамических нагрузок
Степень точности
Твердость поверхностей зубьев
🎦 Видео
Деление окружности на 3; 6; 12 равных частейСкачать
Расчет межцентрового расстоянияСкачать
Видеопрактика 3.2.1 Расчет цепных передач (упрощенно)Скачать
6.3 Зубчатые цилиндрические передачиСкачать
Как рассчитать передаточное число (отношение) зубчатого редуктораСкачать
Конструирование прямозубых шестернейСкачать
Длина общей нормали. Измерение и программа для расчетаСкачать
Зубонарезание для чайников за 6 минут. Часть I - теорияСкачать
Комбинации зубчатых колесСкачать
Зубчатые колесаСкачать
Зубчатые передачиСкачать
Шестеренки. Расчет и изготовление в домашней мастерской.Скачать