Как провести прямую через центр окружности

Планиметрия (прямая и окружность)

Планиметрия изучется в начальном курсе геометрии и зачастую сводится к решению практических задач без изучения теоретической базы.
В данной статье приводятся альтернативные (подсказкам) решения задач из первого раздела (кроме 1.5) приложения Euclidea (геометрические построения с помощью циркуля и линейки).

Решения задач 1.1, 1.2 и 1.3 основаны на том, что с помощью циркуля и линейки можно построить равносторонний треугольник.

1.1 Построить угол 60° с заданой стороной

1.2 Построить серединный перпендикуляр к отрезку

На данной ограниченной прямой построить равносторонний треугольник

Как провести прямую через центр окружности

1.3 Середина отрезка

всё, что можно построить с помощью циркуля и линейки, может быть построено с помощью одного циркуля.

Из точки В радиусом АВ описываем окружность.
По этой окружности откладываем от точки А расстояние АВ три раза: получаем точку С, очевидно, диаметрально противоположную А. Расстояние АС представляет собой двойное рассрастояние АВ. Проведя окружность из С радиусом ВС, мы можем таким же образом найти точку,
диаметрально противоположную В и, следовательно, удаленную от А на
тройное расстояние АВ, и т. д.

Как провести прямую через центр окружности

любое построение, выполнимое на плоскости циркулем и линейкой, можно выполнить одной линейкой, если нарисована хотя бы одна окружность и отмечен её центр.

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Проведем прямые PA и PB и отметим точки D и C их пересечения прямой b. Пусть О — точка пересечения прямых AC и BD. Тогда, согласно предыдущей лемме, прямая PO пересечёт отрезок AB в его середине M.

Решением задачи 1.3 по методу Штейнера-Понеселе будет:

Как провести прямую через центр окружности

1.4 Окружность, вписанная в квадрат

Из точки A, лежащей вне данной полуокружности, опустить на её диаметр перпендикуляр, обходясь при этом без циркуля. Положение центра полуокружности не указано.

Как провести прямую через центр окружности

Нам пригодится здесь то свойство треугольника, что все его высоты пересекаются в одной точке. Соединим A с B и C; получим точки D и E. Прямые BE и CD, очевидно, — высоты треугольника ABC. Третья высота — искомый перпендикуляр к BC — должна проходить через пересечение двух других, т.е. через точку M. Проведя по линейке прямую через точки A и M, мы выполним требованиек задачи, не прибегая к услугам циркуля.

Как провести прямую через центр окружности

И опустив перпендикуляр из точки пересечения диагоналей квадрата на ребро, найдём середину ребра.
Это же построение можно использовать для решения задачи 2.9 Окружность, касающаяся прямой

1.6 Найти центр окружности

Плоский угол, опирающийся на диаметр окружности, — прямой.

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Определение: касательной к окружности называется прямая, имеющая с окружностью одну общую точку. Касательная к окружности перпендикулярна радиусу, проведённому в точку касания.

Рассмотрим задачу 2.8
2.8 Касательная к окружности в точке
Возвращаясь к предыдущей задаче, эту задачу можно решить построив угол, опирающийся на диаметр окружности по теореме Фалеса

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Далее, построив перпендикуляр к касательной, найдём диаметр окружности, и, разделив его пополам, найдём центр окружности.

Ещё об одном способе построения касательной к окружности можно узнать из лекции 1.5 курса «Геометрия и группы» А. Савватеева ссылка

1.7 Квадрат, вписанный в окружность

Задача Наполеона

Как провести прямую через центр окружности

Решим задачу методом Мора-Маскерони.
Построим три окружности радиусом r и две окружности радиусом Как провести прямую через центр окружности

Как провести прямую через центр окружности

В приложении нет такой операции, как перенос раствора циркуля (равного MO), поэтому необходимо использовать дополнительные построения.
Для того, чтобы построить касательную к исходной окружности, параллельную МО, необходимо произвести построения, которые были приведены выше (построить три окружности радиусом r и две окружности радиусом Как провести прямую через центр окружности), но вместо исходной окружности взять окружность, обозначенную на рисунке синим цветом
Как провести прямую через центр окружности
Т.о. мы перенесли раствор циркуля (равный МО) в точку А.
Далее из точки А необходимо провести окружность c радиусом МО
Как провести прямую через центр окружности

Видео:Как найти центр круга с помощью подручных средств? ЛЕГКО.Скачать

Как найти центр круга с помощью подручных средств? ЛЕГКО.

Касательная к окружности

Как провести прямую через центр окружности

О чем эта статья:

Видео:4K Как найти центр окружности, how to find the center of a circleСкачать

4K Как найти центр окружности, how to find the center of a circle

Касательная к окружности, секущая и хорда — в чем разница

В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.

Как провести прямую через центр окружности

Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.

Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).

Как провести прямую через центр окружности

Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.

Видео:Центр кругаСкачать

Центр круга

Свойства касательной к окружности

Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.

Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.

Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:

  • окружность с центральной точкой А;
  • прямая а — касательная к ней;
  • радиус АВ, проведенный к касательной.

Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. аАВ.

Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.

В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.

Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.

Как провести прямую через центр окружности

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Задача

У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.

Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.

Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.

∠АОС = 180° — ∠САО — ∠АСО = 180° — 90° — 28° = 62°

Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.

Как провести прямую через центр окружности

Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.

Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.

Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.

Как провести прямую через центр окружности

Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.

Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.

Задача 1

У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.

Решение

Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.

∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).

Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:

∠BDC = ∠BDA × 2 = 30° × 2 = 60°

Итак, угол между касательными составляет 60°.

Как провести прямую через центр окружности

Задача 2

К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.

Решение

Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.

Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.

∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°

Как провести прямую через центр окружности

Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.

Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.

Как провести прямую через центр окружности

Задача 1

Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.

Решение

Исходя из соотношения касательной и секущей МА 2 = МВ × МС.

Найдем длину внешней части секущей:

МС = МВ — ВС = 16 — 12 = 4 (см)

МА 2 = МВ × МС = 16 х 4 = 64

Как провести прямую через центр окружности

Задача 2

Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.

Решение

Допустим, что МО = у, а радиус окружности обозначим как R.

В таком случае МВ = у + R, а МС = у – R.

Поскольку МВ = 2 МА, значит:

МА = МВ : 2 = (у + R) : 2

Согласно теореме о касательной и секущей, МА 2 = МВ × МС.

(у + R) 2 : 4 = (у + R) × (у — R)

Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:

Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).

Как провести прямую через центр окружности

Ответ: MO = 10 см.

Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.

Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда . Отметим на касательной прямой точку C, чтобы получился угол AВC.

Как провести прямую через центр окружности

Задача 1

Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.

Решение

Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.

АВ = ∠АВС × 2 = 32° × 2 = 64°

Как провести прямую через центр окружности

Задача 2

У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.

Решение

Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:

КМ = 2 ∠МКВ = 2 х 84° = 168°

Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.

∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2

Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:

∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°

Видео:Возьми на заметку! Как быстро найти центр окружности.#shortsСкачать

Возьми на заметку! Как быстро найти центр окружности.#shorts

Отрезки и прямые, связанные с окружностью. Теорема о бабочке

Как провести прямую через центр окружностиОтрезки и прямые, связанные с окружностью
Как провести прямую через центр окружностиСвойства хорд и дуг окружности
Как провести прямую через центр окружностиТеоремы о длинах хорд, касательных и секущих
Как провести прямую через центр окружностиДоказательства теорем о длинах хорд, касательных и секущих
Как провести прямую через центр окружностиТеорема о бабочке

Как провести прямую через центр окружности

Видео:Уравнение окружности (1)Скачать

Уравнение окружности (1)

Отрезки и прямые, связанные с окружностью

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Конечная часть плоскости, ограниченная окружностью

Отрезок, соединяющий центр окружности с любой точкой окружности

Отрезок, соединяющий две любые точки окружности

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

Прямая, пересекающая окружность в двух точках

ФигураРисунокОпределение и свойства
ОкружностьКак провести прямую через центр окружности
КругКак провести прямую через центр окружности
РадиусКак провести прямую через центр окружности
ХордаКак провести прямую через центр окружности
ДиаметрКак провести прямую через центр окружности
КасательнаяКак провести прямую через центр окружности
СекущаяКак провести прямую через центр окружности
Окружность
Как провести прямую через центр окружности

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

КругКак провести прямую через центр окружности

Конечная часть плоскости, ограниченная окружностью

РадиусКак провести прямую через центр окружности

Отрезок, соединяющий центр окружности с любой точкой окружности

ХордаКак провести прямую через центр окружности

Отрезок, соединяющий две любые точки окружности

ДиаметрКак провести прямую через центр окружности

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

КасательнаяКак провести прямую через центр окружности

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

СекущаяКак провести прямую через центр окружности

Прямая, пересекающая окружность в двух точках

Видео:Найти центр кругаСкачать

Найти центр круга

Свойства хорд и дуг окружности

ФигураРисунокСвойство
Диаметр, перпендикулярный к хордеКак провести прямую через центр окружностиДиаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.
Диаметр, проходящий через середину хордыДиаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.
Равные хордыКак провести прямую через центр окружностиЕсли хорды равны, то они находятся на одном и том же расстоянии от центра окружности.
Хорды, равноудалённые от центра окружностиЕсли хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.
Две хорды разной длиныКак провести прямую через центр окружностиБольшая из двух хорд расположена ближе к центру окружности.
Равные дугиКак провести прямую через центр окружностиУ равных дуг равны и хорды.
Параллельные хордыКак провести прямую через центр окружностиДуги, заключённые между параллельными хордами, равны.
Диаметр, перпендикулярный к хорде
Как провести прямую через центр окружности

Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.

Диаметр, проходящий через середину хордыКак провести прямую через центр окружности

Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.

Равные хордыКак провести прямую через центр окружности

Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.

Хорды, равноудалённые от центра окружностиКак провести прямую через центр окружности

Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.

Две хорды разной длиныКак провести прямую через центр окружности

Большая из двух хорд расположена ближе к центру окружности.

Равные дугиКак провести прямую через центр окружности

У равных дуг равны и хорды.

Параллельные хордыКак провести прямую через центр окружности

Дуги, заключённые между параллельными хордами, равны.

Видео:Как найти центр круга в мастерской (4 способа)Скачать

Как найти центр круга в мастерской (4 способа)

Теоремы о длинах хорд, касательных и секущих

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Как провести прямую через центр окружности

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Как провести прямую через центр окружности

Как провести прямую через центр окружности

ФигураРисунокТеорема
Пересекающиеся хордыКак провести прямую через центр окружности
Касательные, проведённые к окружности из одной точкиКак провести прямую через центр окружности
Касательная и секущая, проведённые к окружности из одной точкиКак провести прямую через центр окружности
Секущие, проведённые из одной точки вне кругаКак провести прямую через центр окружности

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Как провести прямую через центр окружности

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Пересекающиеся хорды
Как провести прямую через центр окружности
Касательные, проведённые к окружности из одной точки
Как провести прямую через центр окружности
Касательная и секущая, проведённые к окружности из одной точки
Как провести прямую через центр окружности
Секущие, проведённые из одной точки вне круга
Как провести прямую через центр окружности
Пересекающиеся хорды
Как провести прямую через центр окружности

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Как провести прямую через центр окружности

Касательные, проведённые к окружности из одной точки

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Касательная и секущая, проведённые к окружности из одной точки

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Секущие, проведённые из одной точки вне круга

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Видео:Окружность и круг, 6 классСкачать

Окружность и круг, 6 класс

Доказательства теорем о длинах хорд, касательных и секущих

Теорема 1 . Предположим, что хорды окружности AB и CD пересекаются в точке E (рис.1).

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Тогда справедливо равенство

Как провести прямую через центр окружности

Доказательство . Заметим, что углы BCD и BAD равны как вписанные углы, опирающиеся на одну и ту же дугу. Углы BEC и AED равны как вертикальные. Поэтому треугольники BEC и AED подобны. Следовательно, справедливо равенство

Как провести прямую через центр окружности

откуда и вытекает требуемое утверждение.

Теорема 2 . Предположим, что из точки A , лежащей вне круга, к окружности проведены касательная AB и секущая AD (рис.2).

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Точка B – точка касания с окружностью, точка C – вторая точка пересечения прямой AD с окружностью. Тогда справедливо равенство

Как провести прямую через центр окружности

Доказательство . Заметим, что угол ABC образован касательной AB и хордой BC , проходящей через точку касания B . Поэтому величина угла ABC равна половине угловой величины дуги BC . Поскольку угол BDC является вписанным углом, то величина угла BDC также равна половине угловой величины дуги BC . Следовательно, треугольники ABC и ABD подобны (угол A является общим, углы ABC и BDA равны). Поэтому справедливо равенство

Как провести прямую через центр окружности

откуда и вытекает требуемое утверждение.

Теорема 3 . Предположим, что из точки A , лежащей вне круга, к окружности проведены секущие AD и AF (рис.3).

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Точки C и E – вторые точки пересечения секущих с окружностью. Тогда справедливо равенство

Как провести прямую через центр окружности

Доказательство . Проведём из точки A касательную AB к окружности (рис. 4).

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Точка B – точка касания. В силу теоремы 2 справедливы равенства

Как провести прямую через центр окружности

откуда и вытекает требуемое утверждение.

Видео:Найти центр и радиус окружностиСкачать

Найти центр и радиус окружности

Теорема о бабочке

Теорема о бабочке . Через середину G хорды EF некоторой окружности проведены две произвольные хорды AB и CD этой окружности. Точки K и L – точки пересечения хорд AC и BD с хордой EF соответственно (рис.5). Тогда отрезки GK и GL равны.

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Доказательство . Существует много доказательств этой теоремы. Изложим доказательство, основанное на теореме синусов, которое, на наш взгляд, является наиболее наглядным. Для этого заметим сначала, что вписанные углы A и D равны, поскольку опираются на одну и ту же дугу. По той же причине равны и вписанные углы C и B . Теперь введём следующие обозначения:

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Воспользовавшись теоремой синусов, применённой к треугольнику CKG , получим

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Воспользовавшись теоремой синусов, применённой к треугольнику AKG , получим

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Воспользовавшись теоремой 1, получим

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Воспользовавшись равенствами (1) и (2), получим

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Как провести прямую через центр окружности

Проводя совершенно аналогичные рассуждения для треугольников BGL и DGL , получим равенство

Как провести прямую через центр окружности

откуда вытекает равенство

что и завершает доказательство теоремы о бабочке.

🔥 Видео

ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямойСкачать

ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямой

Окружность. 7 класс.Скачать

Окружность. 7 класс.

9 класс, 6 урок, Уравнение окружностиСкачать

9 класс, 6 урок, Уравнение окружности

Не каждый знает как найти центр окружности без циркуля! #ShortsСкачать

Не каждый знает как найти центр окружности без циркуля! #Shorts

Как найти центр и радиус нарисованной окружности #математика #егэ2023 #школа #fyp #shortsСкачать

Как найти центр и радиус нарисованной окружности #математика #егэ2023 #школа #fyp #shorts

Определение центра дуги окружности, построение окружности по 3 точкамСкачать

Определение центра дуги окружности, построение окружности по 3 точкам

Точка O – центр окружности, на которой лежат точки ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Точка O – центр окружности, на которой лежат точки ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

№203. Через центр О окружности, вписанной в треугольник ABC, проведена прямая ОK, перпендикулярнаяСкачать

№203. Через центр О окружности, вписанной в треугольник ABC, проведена прямая ОK, перпендикулярная

ОГЭ ЗАДАНИЕ 16 ТОЧКА О ЦЕНТР ОКРУЖНОСТИ, НА КОТОРОЙ ЛЕЖАТ ТОЧКИ А В И ССкачать

ОГЭ ЗАДАНИЕ 16 ТОЧКА О ЦЕНТР ОКРУЖНОСТИ, НА КОТОРОЙ ЛЕЖАТ ТОЧКИ А В И С

начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.Скачать

начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.

№200. Докажите, что любая точка прямой, которая проходит через центр окружности, описанной около мноСкачать

№200. Докажите, что любая точка прямой, которая проходит через центр окружности, описанной около мно
Поделиться или сохранить к себе: