Как построить середину отрезка без окружностей

Построение середины отрезка

Пример:

Дано: отрезок АВ.

Построить: середину АВ.

Решение:

Строим с помощью линейки произвольный отрезок АВ.

Как построить середину отрезка без окружностей

Далее с помощью циркуля строим две окружности радиуса АВ с центрами в точках А и В.

Как построить середину отрезка без окружностей

Получаем две точки пересечения данных окружностей. Обозначим их Р и Q. Проведем с помощью линейки через точки Р и Q прямую РQ.

Как построить середину отрезка без окружностей

Точку пересечения прямой РQ и отрезка АВ обозначим О.

Как построить середину отрезка без окружностей

Докажем, что точка О — искомая точка, т.е. точка О — середина отрезка АВ.

Рассмотрим треугольники РАQ и РВQ.

Как построить середину отрезка без окружностей

По построению АР = ВР, АQ = BQ (как радиусы одинаковых окружностей), PQ — общая, следовательно, Как построить середину отрезка без окружностейРАQ =Как построить середину отрезка без окружностейРВQ по 3 признаку равенства треугольников. Значит, по свойству равных треугольников Как построить середину отрезка без окружностейАРО =Как построить середину отрезка без окружностейВРО, тогда РО — биссектриса Как построить середину отрезка без окружностейАРВ.

В Как построить середину отрезка без окружностейАРВ АР = ВР (как радиусы одинаковых окружностей), следовательно, Как построить середину отрезка без окружностейАРВ — равнобедренный, тогда по свойству равнобедренного треугольника биссектриса РО Как построить середину отрезка без окружностейАРВ и его медиана, следовательно, точка О — середина отрезка АВ. Что и требовалось доказать.

Поделись с друзьями в социальных сетях:

Видео:Построение середины отрезкаСкачать

Построение середины отрезка

Урок№2 Тема: Построение середины отрезка. Построение перпендикулярных прямых

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Видео:Построение середины отрезкаСкачать

Построение середины отрезка

«Снятие эмоционального напряжения
у детей и подростков с помощью арт-практик
и психологических упражнений»

Сертификат и скидка на обучение каждому участнику

Как построить середину отрезка без окружностей

Тема : Построение середины отрезка. Построение перпендикулярных прямых

обучающая: научить учащихся с помощью циркуля и линейки выполнять деление отрезка пополам; сформировать умения и навыки построения перпендикулярных прямых;

развивающая: развитие пространственного мышления, внимания;

воспитательная: воспитание трудолюбия и аккуратности.

1. Актуализация основных теоретических понятий (5мин).

Сначала можно провести фронтальный опрос по следующим вопросам:

1. Дайте определение окружности. Что такое центр, радиус, хорда и диаметр окружности?

2. Какой треугольник называется равнобедренным? Как называются его стороны?

3. Какой треугольник называется равносторонним?

4. Что называют серединой отрезка?

Далее предложить задание: с помощью циркуля и линейки построить биссектрису, выходящую из вершины равнобедренного треугольника. Перечислить ее свойства.

2. Изучение нового материала (практическая работа) (20мин)

Построение середины отрезка

При изучении нового материала используется таблица№4 приложения 4, по которой учащиеся составляют рассказ, как разделить данный отрезок пополам. После этого в тетрадях выполняются соответствующие построения.

Задача . Построить середину данного отрезка (объясняет учитель с помощью учащихся).

Решение . Пусть АВ — данный отрезок. Построим две окружности с центрами А и В радиуса АВ (рис.5).

Как построить середину отрезка без окружностей

Они пересекаются в точках Р и Q. Проведем прямую РQ. Точка О пересечения этой прямой с отрезком АВ и искомая середина отрезка АВ.

В самом деле, треугольники АРQ и ВРQ равны по трем сторонам, поэтому 1=2.

Следовательно, отрезок РО — биссектриса равнобедренного треугольника АРВ, а значит, и медиана, т.е. точка О — середина отрезка АВ.

Построение перпендикулярных прямых

Здесь необходимо обратить внимание, что возможны два случая:

1. Точка принадлежит прямой;

2. Точка не принадлежит прямой.

После повторения учитель формулирует задачу и объясняет построение для первого случая, при этом может быть использована таблица№3 приложения 4.

При рассмотрении второго случая учащиеся при помощи таблицы 4 проводят построение и доказательство самостоятельно.

Задача . Через данную точку О провести прямую, перпендикулярную данной прямой а (объясняет учитель, после обсуждения с учениками).

Решение . Возможны два случая:

1) точка О лежит на прямой а;

2) точка О не лежит на прямой а.

Рассмотрим первый случай (рис.6). Из точки О проводим произвольным радиусом окружность. Она пересекает прямую а в двух точках: А и В. из точек А и В проводим окружности радиусом АВ. Пусть С — точка их пересечения. Искомая прямая проходит через точки О и С.

Как построить середину отрезка без окружностей

Перпендикулярность прямых ОС и АВ следует из равенства углов при вершине О треугольников АСО и ВСО.

Эти треугольники равны по третьему признаку равенства треугольников.

Рассмотрим построение и доказательство для второго случая (рис.7).

Как построить середину отрезка без окружностей

Из точки О проводим окружность, пересекающую прямую а. Пусть А и В — точки ее пересечения с прямой а. Из точек А и В тем же радиусом проводим окружности. Пусть О — точка их пересечения, лежащая в полуплоскости, отличной от той, в которой лежит точка О. Искомая прямая проходит через точки О и О. Докажем это. Обозначим через С точку пересечения прямых АВ и ОО. Треугольники АОВ и АОВ равны по третьему признаку. Поэтому угол ОАС равен углу ОАС. А тогда треугольники ОАС и ОАС равны по первому признаку. Значит, их углы АСО и АСО равны. А так как они смежные, то они прямые. Таким образом, ОС — перпендикуляр, опущенный из точки О на прямую а.

3. Закрепление (10 мин)

Задача. Постройте прямоугольный треугольник по его катетам.

Данную задачу ученик решает у доски, предварительно проведя ее анализ.

Как построить середину отрезка без окружностей

Выполним чертёж — набросок (рис.8).

2. Построение (рис.9).

Как построить середину отрезка без окружностей

1. На прямой отметим точку С и отложим отрезок СВ=а.

2. Построим прямую, проходящую через точку С перпендикулярную СВ.

3. Отложим отрезок СА=b

В АВС ВС=а, СА= b, ВDАС, следовательно, угол ВСА равен 90є. Значит треугольник АВС — искомый.

Также для отработки умений и навыков, можно использовать задачи №154 (а, б) (см. приложение 1).

4. Подведение итога (3мин)

1. В ходе урока мы решили две задачи на построение. Учились:

а) строить середину отрезка;

б) строить перпендикулярные прямые.

2. В ходе решения этих задач:

а) вспомнили признаки равенства треугольников;

б) использовали построения окружностей, отрезков, лучей.

5. На дом (2мин): №153 (см. приложение 1).

Тема: Решение задач на построение

обучающая: отработка умений и навыков выполнения элементарных построений с помощью циркуля и линейки;

развивающая: развитие пространственного мышления, внимания;

воспитательная: воспитание трудолюбия и аккуратности.

1. Проверка домашнего задания (10мин)

Проверить выполнение задачи №153.

Проверку можно организовать так: у доски три ученика, они должны построить прямую, проходящую через точку А перпендикулярно прямой а (рис.10).

Как построить середину отрезка без окружностей

Класс в это время может выполнить задание: дан треугольник АВС. построить высоту АD. После выполнения задания каждый шаг построения должен быть прокомментирован и обоснован.

2. Самостоятельная работа

Самостоятельная работа проводится по трём вариантам и имеет контролирующий характер

1. Разделить отрезок на 4 равные части.

2. Дан АВС. Построить биссектрису ВК.

3. Дан угол АОВ. Построить угол, для которого луч ОВ является биссектрисой.

Видео:Построение середины отрезкаСкачать

Построение середины отрезка

Построение середины отрезка

Деление отрезка пополам. Дан отрезок AB. И требуется построить его середину — точку C, лежащую на этом отрезке, и такую, что AC=BC. Для этого произвольным раствором циркуля построим первую вспомогательную дугу окружности с центром в точке A. И тем же раствором циркуля проводим вторую вспомогательную дугу окружности с центром в точке B — так, чтобы вторая дуга пересекала первую в двух точках — D и E — по обе стороны от отрезка. Соединяем точки D и E прямой — эта прямая пересекает данный отрезок. Точку пересечения называю C — это и есть требуемая середина отрезка. И вот почему: рассмотрим два треугольника : ADE и BDE. В этих треугольниках стороны AD, BD, AE и BE равны, а сторона DE — общая. Выходит, что эти треугольники равны по третьему признаку, и к тому же они оба равнобедренные . А раз эти треугольники равны, значит и соответственные углы ADE и BDE у них равны. Следовательно, в другом равнобедренном треугольнике ADB — проведённая прямая DC делит угол D на две равные части. А биссектриса DC равнобедренного треугольника — является и медианой, то есть DC — медиана , и C — середина отрезка AB. Построение закончено.

🎬 Видео

Построение середины отрезка. Геометрия 7 класс.Скачать

Построение середины отрезка. Геометрия 7 класс.

Геометрия Задача- Ловушка Help Найти середину отрезка циркулемСкачать

Геометрия Задача- Ловушка Help Найти середину отрезка циркулем

Построение угла равного данномуСкачать

Построение угла равного данному

Координаты середины отрезкаСкачать

Координаты середины отрезка

Геометрия Задача про циркуль Найти середину отрезка одним циркулемСкачать

Геометрия Задача про циркуль Найти середину отрезка одним циркулем

Как найти середину отрезка с использованием только циркуля?Скачать

Как найти середину отрезка с использованием только циркуля?

Построение середины отрезка только циркулемСкачать

Построение середины отрезка только циркулем

Геометрия 7 класс (Урок№16 - Окружность. Задачи на построение.)Скачать

Геометрия 7 класс (Урок№16 - Окружность. Задачи на построение.)

Задачи на построение с помощью циркуля и линейки - 7 класс геометрияСкачать

Задачи на построение с помощью циркуля и линейки - 7 класс геометрия

Как найти середину отрезка без линейки! Простой советСкачать

Как найти середину отрезка без линейки!  Простой совет

1 2 4 сопряжение окружностейСкачать

1 2 4  сопряжение окружностей

Построение угла, равного данному. 7 класс.Скачать

Построение угла, равного данному. 7 класс.

Построение биссектрисы угла. 7 класс.Скачать

Построение биссектрисы угла. 7 класс.

Как построить середину отрезка. Задачи на построениеСкачать

Как построить середину отрезка.  Задачи на построение

Деление окружности на 3; 6; 12 равных частейСкачать

Деление окружности на 3; 6; 12 равных частей

Построение середины отрезкаСкачать

Построение середины отрезка

Построение биссектрисы углаСкачать

Построение биссектрисы угла
Поделиться или сохранить к себе: