- Задачи на построение
- Изображение треугольника, если задана одна сторона и два прилегающих к ней угла
- Изображение треугольника, если заданы три стороны
- Изображение треугольника, если заданы две стороны и угол между ними
- Построение треугольника по стороне и двум прилежащим к ней углам
- Осевая и центральная симметрия
- Что такое симметрия
- Осевая симметрия
- Центральная симметрия
- Задачи на самопроверку
- 📽️ Видео
Видео:7 класс, 32 урок, Остроугольный, прямоугольный и тупоугольный треугольникиСкачать
Задачи на построение
Широкое распространение в геометрии получили задачи на построение. Суть этих задач состоит в следующем: при заданных начальных условиях нужно построить тот или иной геометрический объект при помощи линейки и циркуля. Разберем общие принципы решения данных задач:
Анализирование задачи. На этом этапе необходимо установить взаимосвязь между заданными условиями и объектом, который нужно изобразить. Результатом выполнения этого этапа является план решения задачи.
Построение. Согласно разработанного плана выполняется построение объекта.
Доказательство. На этом этапе необходимо доказать, что изображенная фигура полностью соответствует заданным условиям.
Сложно разобраться самому?
Попробуй обратиться за помощью к преподавателям
Изучение. На этом этапе выполняется анализ начальных условий и определение, при каких условиях задача решается одним способом, при каких двумя, а при каких – вовсе не решаема.
Разберем задачи на построение треугольника по трем различным начальным условиям.
Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать
Изображение треугольника, если задана одна сторона и два прилегающих к ней угла
Задана одна сторон треугольника (BC) и прилежащие к ней углы (∝) и (β) , необходимо построить треугольник.
1. Анализируем условия. Необходимо построить треугольник (ABC) , имея одну сторону (BC) и углы (∠K= ∝ и ∠M= β) к ней прилежащие. Разработаем план решения задачи:
- Начертим прямую a, а на ней отмерим отрезок (BC) ;
- Изображаем угол (∠K= ∝) с центром в вершине (B) на стороне (BC) ;
- Изображаем угол (∠M= β) с центром в вершине (C) на стороне (BC) ;
- На пересечении лучей построенных углов получим точку (A) , соединяем ее с точками (C) и (B) , получаем отрезки (AC) и (AB) .
2. Строим треугольник
3. Доказательство. По изображенному рисунку делаем вывод, что все заданные условия выполнены в полной мере.
4. Изучение. Заданные углы могут быть построены и в противоположную сторону, соответственно мы можем построить еще один треугольник, но так как он точно такой же, как и первый, можно считать, что решение этой задачи единственное. Учитывая то, что сумма всех углов треугольника должна равняться 180 0 , если сумма углов (∝) и (β) будет равна или больше 180 0 , решения задача не будет иметь.
Видео:Построение прямоугольного треугольника по 2 катетамСкачать
Изображение треугольника, если заданы три стороны
Заданы три стороны треугольника (AB) , (AC) и (BC) , нужно построить треугольник.
1. Анализируем условия. Необходимо построить треугольник (ABC) , имея три стороны (AB) , (AC) и BC. Разработаем план решения задачи:
- Начертим прямую (a) , а на ней отмерим отрезок (AB) ;
- Чертим с помощью циркуля две окружности. Одна окружность будет с центром в точке (A) с радиусом (AC) , а вторая с центром в точке (B) с радиусом (BC) ;
- На пересечении окружностей мы получим точку (C) , соединяем ее с точками (A) и (B) , получаем отрезки (AC) и (BC) .
2. Строим треугольник:
3. Доказательство. По изображенному рисунку делаем вывод, что все заданные условия выполнены в полной мере.
Не нашли что искали?
Просто напиши и мы поможем
4. Изучение. Построенные окружности имеют две точки пересечения, поэтому мы можем построить еще один треугольник, но так как он точно такой же, как и первый, можно считать, что решение этой задачи единственное. Учитывая то, что сумма двух сторон треугольника всегда больше, чем третья его сторона, можно сделать вывод, если это условие не будет выполнено для заданных сторон, то задача не будет иметь решение.
Видео:Строим треугольник по трем сторонам (Задача 5).Скачать
Изображение треугольника, если заданы две стороны и угол между ними
Заданы две стороны треугольника (AB) и (AC) , а также угол ∝ между ними, необходимо построить треугольник.
1. Анализируем условия. Необходимо построить треугольник (ABC) , имея стороны (AB) и (AC) , а также угол (CAB) , равный (∝) . Разработаем план решения задачи:
- начертим прямую (a) , а на ней отмерим отрезок (AB) ;
- отмеряем угол (MAB) , равный (∝) ;
- откладываем отрезок (AC) на прямой (AM) ;
- чертим третью сторону треугольника (CB) , соединяя точки (B) и (C) .
2. Строим треугольник:
3. Доказательство. По изображенному рисунку делаем вывод, что все заданные условия выполнены в полной мере.
4.Изучение. Прямая a бесконечна, поэтому таких треугольников можно изобразить очень много, но учитывая тот факт, что они все одинаковые, будем считать, что задача имеет одно решение. При условии, если угол (∝) будет равен или больше 180 0 , решения задача не будет иметь, так как сумма всех углов треугольника должна равняться 180 0 .
Видео:Построение прямоугольного треугольника по гипотенузе и острому углу. 7 класс. Геометрия.Скачать
Построение треугольника по стороне и двум прилежащим к ней углам
Задача:
Построить треугольник по стороне и двум прилежащим к ней углам.
Дано: отрезок МК, 1, 2.
Построить АВС такой, что АВ = МК, ВАС =1, АВС =2.
Решение:
С помощью линейки проводим прямую и на ней с помощью циркуля отложим отрезок АВ, равный отрезку МК. Для этого произвольно на прямой ставим точку А, с помощью циркуля измеряем отрезок МК и строим окружность с центром в точке А радиуса МК (всю окружность строить необязательно, смотри, выделенное красным цветом). Точку пересечения окружности с прямой обозначаем В.
Далее строим угол ВАF равный углу 1. Для этого строим с помощью циркуля окружность радиуса МК с центром в вершине угла 1 (всю окружность строить необязательно, смотри, выделенное красным цветом). Точки пересечения данной окружности со сторонами угла 1 обозначаем N и Р.
С помощью циркуля измеряем длину отрезка NP и строим окружность радиуса NP с центром в точке В (всю окружность строить необязательно, смотри, выделенное синим цветом). Точку пересечения окружности с окружностью радиуса МК с центром в точке А обозначаем F.
Далее, проводим луч АF с помощью линейки.
Далее, строим угол АВD равный углу 2. Для этого строим с помощью циркуля окружность радиуса МК с центром в вершине угла 2 (всю окружность строить необязательно, смотри, выделенное красным цветом). Точки пересечения данной окружности со сторонами угла 2 обозначаем О и Е.
С помощью циркуля строим окружность радиуса МК с центром в точке В (всю окружность строить необязательно, смотри, выделенное красным цветом), затем измеряем длину отрезка ОЕ и строим окружность радиуса ОЕ с центром в точке А (всю окружность строить необязательно, смотри, выделенное синим цветом). Точку пересечения данных окружностей обозначаем D.
Далее, проводим луч ВD с помощью линейки.
Точку пересечения лучей АF и ВD обозначаем С. Получаем треугольник АВС, в котором по построению АВ = МК, ВАС =1, АВС =2, следовательно, треугольник АВС — искомый.
Данная задача не всегда имеет решение. Так как по теореме о сумме углов треугольника: сумма углов всякого треугольника равна 180 0 . Значит, сумма двух данных углов должна быть меньше 180 0 . Если же сумма двух данных углов будет больше 180 0 , то нельзя построить треугольник, углы которого равнялись бы данным углам.
Поделись с друзьями в социальных сетях:
Видео:Строим треугольник по гипотенузе и катету (Задача 6)Скачать
Осевая и центральная симметрия
О чем эта статья:
Видео:Построение равнобедренного треугольникаСкачать
Что такое симметрия
Симметрия — это соразмерность, пропорциональность частей чего-либо, расположенных по обе стороны от центра. Говоря проще, если обе части от центра одинаковы, то это симметрия.
Ось симметрии фигуры — это прямая, которая делит фигуру на две симметричные части. Чтобы наглядно понять, что такое ось симметрии, внимательно рассмотрите рисунок.
Центр симметрии — это точка, в которой пересекаются все оси симметрии.
Вернемся к рисунку: на нем мы видим фигуры, имеющие ось и центр симметрии.
Рассмотрите фигуры с осевой и центральной симметрией.
- Ось симметрии угла — биссектриса.
- Ось симметрии равностороннего треугольника — биссектриса, медиана, высота.
- Оси симметрии прямоугольника проходят через середины его сторон.
- У ромба две оси симметрии — прямые, содержащие его диагонали.
- У квадрата 4 оси симметрии, так как он сразу и квадрат, и ромб.
- Ось симметрии окружности — любая прямая, проведенная через ее центр.
Витрувианский человек да Винчи — хрестоматийный пример симметрии. Принято считать, что, чем предмет симметричнее, тем он красивее. Хотя, по секрету, в природе нет ничего абсолютно симметричного, так уж задумано. Вся идеальная симметрия — дело рук человека.
Видео:Строим треугольник по стороне и двум углам (Задача 7).Скачать
Осевая симметрия
Вот как звучит определение осевой симметрии:
Осевой симметрией называется симметрия, проведенная относительно прямой. При осевой симметрии любой точке, расположенной по одну сторону прямой, всегда соответствует другая точка на второй стороне этой прямой.
При этом отрезки, соединяющие эти точки, перпендикулярны оси симметрии.
Осевая симметрия часто встречается в повседневной жизни. К сожалению, не на фото в паспорте и не в стрелках на глазах. Но её вполне себе можно встретить в половинках авокадо, на морде кота или в зданиях вокруг. Осевая симметрия — неотъемлемая часть архитектуры. Оглядитесь и поищите примеры осевой симметрии вокруг вас.
В геометрии есть фигуры, обладающие осевой симметрией: квадрат, треугольник, ромб, прямоугольник.
Давайте разберемся, как построить фигуру, симметричную данной относительно прямой.
Пример 1. Постройте треугольник A1B1C1 ,симметричный треугольнику ABC относительно прямой.
- Проведем из вершин треугольника ABC три прямые, перпендикулярные оси симметрии, выведем эти прямые на другую сторону оси симметрии.
- Найдем расстояние от вершин треугольника ABC до точек на оси симметрии.
- С другой стороны прямой отложим такие же расстояния.
- Соединяем точки отрезками и строим треугольник A1B1C1, симметричный треугольнику ABC.
- Получаем два треугольника, симметричных относительно оси симметрии.
Пример 2. Постройте треугольник, симметричный треугольнику ABC относительно прямой d.
- Строим по уже известному алгоритму. Проводим прямые, перпендикулярные прямой d, из вершин треугольника ABC и выводим их на другую сторону оси симметрии.
- Измеряем расстояние от вершин до точек на прямой.
- Откладываем такие же расстояния на другой стороне оси симметрии.
- Соединяем точки и строим треугольник A1B1C1.
Пример 3. Построить отрезок A1B1, симметричный отрезку AB относительно прямой l.
- Проводим через точку А прямую, перпендикулярную прямой l.
- Проводим через точку В прямую, перпендикулярную прямой l.
- Измеряем расстояния от точек А и В до прямой l.
- Откладываем такое же расстояние на перпендикулярных прямых от прямой l по другую сторону и ставим точки A1 и B1.
- Соединяем точки A1 и B1.
Больше примеров и увлекательных заданий — на курсах по математике в онлайн-школе Skysmart!
Видео:№194. Начертите треугольник. Через каждую вершину этого треугольника с помощью чертежногоСкачать
Центральная симметрия
Теперь поговорим о центральной симметрии — вот ее определение:
Центральной симметрией называется симметрия относительно точки.
Фигуры с центральной симметрией, как и фигуры с осевой симметрией, окружают нас повсюду. Центральную симметрию можно заметить в живой природе, в разрезе фруктов и в цветах.
Давайте разберемся, как построить центральную симметрию и рассмотрим алгоритм построения фигур с центральной симметрией.
Пример 1: Постройте треугольник A1B1C1 ,симметричный треугольнику ABC, относительно центра (точки О).
- Соединяем точки ABC c центром и выводим эти прямые на другую сторону оси.
- Измеряем отрезки AO, BO, CO и откладываем равные им отрезки с другой стороны от центра (точки О).
- Получившиеся точки соединяем отрезками A1B1 A1C1 B1C1.
- Получаем треугольник A1B1C1, симметричный треугольнику ABC, относительно центра.
Пример 2. Построить отрезок A1B1, симметричный отрезку AB относительно центра (точки О).
- Измеряем расстояние от точки B до точки О и от точки А до точки О.
- Проводим прямую из точки А через точку О и выводим ее на другую сторону.
- Проводим прямую из точки B через точку О и выводим ее на другую сторону.
- Чертим на противоположной стороне отрезки А1О и B1О, равные отрезкам АО и АB.
- Соединяем точки A1 и B1 и получаем отрезок A1B1, симметричный данному.
Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать
Задачи на самопроверку
В 8 классе геометрия — сплошная симметрия: центральная, осевая, зеркальная да какая угодно. Чтобы во всем этом не поплыть, больше тренируйтесь. Чертите и приглядывайтесь, угадывайте вид симметрии и решайте больше задачек. Вот несколько упражнений для тренировки. Мы в вас очень верим!
Задачка 1. Рассмотрите симметричные геометрические рисунки и назовите вид симметрии.
Мы рассмотрели примеры осевой и центральной симметрии и знаем, что:
Симметрия относительно прямой — осевая
Симметрия относительно точки — центральная
Задачка 2. Пусть M и N какие-либо точки, l — ось симметрии. М1 и N1 — точки,
симметричные точкам M и N относительно прямой l. Докажите, что MN = М1N1.
Подсказка: опустите перпендикуляры из точек N и N1 на прямую MМ1.
Задачка 3. Постройте фигуру, симметричную данной относительно прямой a.
📽️ Видео
6 .7 кл Построение параллельных прямых.Как построить параллельные прямыеСкачать
Лекция 1. Точка на прямой. Метод прямоугольного треугольникаСкачать
Построение прямоугольного треугольника по гипотенузе и катету.Скачать
Что такое угол? Виды углов: прямой, острый, тупой, развернутый уголСкачать
Построение высоты в треугольникеСкачать
Построение треугольника по двум сторонам и углу между ними. 7 класс. Геометрия.Скачать
Построение прямоугольного треугольника по катету и прилежащему острому углуСкачать
Высота, биссектриса, медиана. 7 класс.Скачать
Строим вписанную в данный треугольник окружность (Задача 2).Скачать
Построение следов плоскостиСкачать