Как построить описанную окружность в равнобедренном треугольнике

Please wait.

Видео:Свойство окружности, описанной около равнобедренного треугольникаСкачать

Свойство окружности, описанной около равнобедренного треугольника

We are checking your browser. mathvox.ru

Видео:Вписанная и описанная около равнобедренного треугольника, окружностьСкачать

Вписанная и описанная около равнобедренного треугольника,  окружность

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

Видео:Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6d3eabe83a5916d3 • Your IP : 85.95.179.65 • Performance & security by Cloudflare

Видео:Строим вписанную в данный треугольник окружность (Задача 2).Скачать

Строим вписанную в данный треугольник окружность (Задача 2).

Радиус описанной окружности равнобедренного треугольника

Радиус описанной окружности равнобедренного треугольника можно найти по одной из общих формул радиуса окружности, описанной около треугольника.

Используя свойства равнобедренного треугольника, можно также получить дополнительные формулы.

I. Радиус описанной около треугольника окружности можно найти по формуле

Как построить описанную окружность в равнобедренном треугольнике

Площадь равнобедренного треугольника через длину основание a и боковую сторону b можно найти по формуле

Как построить описанную окружность в равнобедренном треугольнике

соответственно, формула для нахождения радиуса описанной окружности для равнобедренного треугольника принимает вид:

Как построить описанную окружность в равнобедренном треугольнике

Как построить описанную окружность в равнобедренном треугольнике

Как построить описанную окружность в равнобедренном треугольнике

Как построить описанную окружность в равнобедренном треугольнике

верна и для равнобедренного треугольника.

Радиус описанной около равнобедренного треугольника окружности:

Как построить описанную окружность в равнобедренном треугольнике

где a — основание, b — боковая сторона, α — угол при вершине, β — угол при основании.

III. Радиус описанной окружности в равнобедренном треугольнике можно найти непосредственно, без использования общих формул.

Как построить описанную окружность в равнобедренном треугольнике

Например, в прямоугольном треугольнике AOF AO=R, AF=b/2, ∠FAO=α/2. Отсюда

Как построить описанную окружность в равнобедренном треугольнике

Как построить описанную окружность в равнобедренном треугольнике

Как построить описанную окружность в равнобедренном треугольнике

IV. В равнобедренном тупоугольном треугольнике центр описанной окружности лежит вне треугольника, напротив его вершины.

Радиус находят по тем же формулам, что и для остроугольного треугольника.

V. В равнобедренном прямоугольном треугольнике центр описанной окружности лежит на середине гипотенузы, радиус равен половине гипотенузы (то есть половине основания треугольника).

Видео:Построение равностронего треугольника.Скачать

Построение равностронего треугольника.

Как описать окружность в равнобедренном треугольнике

Видео:№711. Начертите три треугольника: тупоугольный, прямоугольный и равносторонний. ДляСкачать

№711. Начертите три треугольника: тупоугольный, прямоугольный и равносторонний. Для

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов

Как построить описанную окружность в равнобедренном треугольникеСерединный перпендикуляр к отрезку
Как построить описанную окружность в равнобедренном треугольникеОкружность описанная около треугольника
Как построить описанную окружность в равнобедренном треугольникеСвойства описанной около треугольника окружности. Теорема синусов
Как построить описанную окружность в равнобедренном треугольникеДоказательства теорем о свойствах описанной около треугольника окружности

Как построить описанную окружность в равнобедренном треугольнике

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Как построить описанную окружность в равнобедренном треугольнике

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Как построить описанную окружность в равнобедренном треугольнике

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Как построить описанную окружность в равнобедренном треугольнике

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Как построить описанную окружность в равнобедренном треугольнике

Как построить описанную окружность в равнобедренном треугольнике

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Как построить описанную окружность в равнобедренном треугольнике

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Как построить описанную окружность в равнобедренном треугольнике

Как построить описанную окружность в равнобедренном треугольнике

Полученное противоречие и завершает доказательство теоремы 2

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Как построить описанную окружность в равнобедренном треугольнике

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Свойства описанной около треугольника окружности. Теорема синусов

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Как построить описанную окружность в равнобедренном треугольникеВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаКак построить описанную окружность в равнобедренном треугольникеОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиКак построить описанную окружность в равнобедренном треугольникеЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиКак построить описанную окружность в равнобедренном треугольникеЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовКак построить описанную окружность в равнобедренном треугольнике

Для любого треугольника справедливы равенства (теорема синусов):

Как построить описанную окружность в равнобедренном треугольнике,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаКак построить описанную окружность в равнобедренном треугольнике

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиКак построить описанную окружность в равнобедренном треугольнике

Для любого треугольника справедливо равенство:

Как построить описанную окружность в равнобедренном треугольнике

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Серединные перпендикуляры к сторонам треугольника
Как построить описанную окружность в равнобедренном треугольнике

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольникаКак построить описанную окружность в равнобедренном треугольнике

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружностиКак построить описанную окружность в равнобедренном треугольнике

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружностиКак построить описанную окружность в равнобедренном треугольнике

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружностиКак построить описанную окружность в равнобедренном треугольнике

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусовКак построить описанную окружность в равнобедренном треугольнике

Для любого треугольника справедливы равенства (теорема синусов):

Как построить описанную окружность в равнобедренном треугольнике,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаКак построить описанную окружность в равнобедренном треугольнике

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиКак построить описанную окружность в равнобедренном треугольнике

Для любого треугольника справедливо равенство:

Как построить описанную окружность в равнобедренном треугольнике

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Видео:Задача 6 №27923 ЕГЭ по математике. Урок 140Скачать

Задача 6 №27923 ЕГЭ по математике. Урок 140

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Как построить описанную окружность в равнобедренном треугольнике

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Как построить описанную окружность в равнобедренном треугольнике

Как построить описанную окружность в равнобедренном треугольнике.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

l = 2Rsin φ .(1)

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Как построить описанную окружность в равнобедренном треугольнике

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

Видео:Построить окружность, описанную около треугольникаСкачать

Построить окружность, описанную около треугольника

Радиус описанной окружности равнобедренного треугольника

Радиус описанной окружности равнобедренного треугольника можно найти по одной из общих формул радиуса окружности, описанной около треугольника.

Используя свойства равнобедренного треугольника, можно также получить дополнительные формулы.

I. Радиус описанной около треугольника окружности можно найти по формуле

Как построить описанную окружность в равнобедренном треугольнике

Площадь равнобедренного треугольника через длину основание a и боковую сторону b можно найти по формуле

Как построить описанную окружность в равнобедренном треугольнике

соответственно, формула для нахождения радиуса описанной окружности для равнобедренного треугольника принимает вид:

Как построить описанную окружность в равнобедренном треугольнике

Как построить описанную окружность в равнобедренном треугольнике

Как построить описанную окружность в равнобедренном треугольнике

Как построить описанную окружность в равнобедренном треугольнике

верна и для равнобедренного треугольника.

Радиус описанной около равнобедренного треугольника окружности:

Как построить описанную окружность в равнобедренном треугольнике

где a — основание, b — боковая сторона, α — угол при вершине, β — угол при основании.

III. Радиус описанной окружности в равнобедренном треугольнике можно найти непосредственно, без использования общих формул.

Как построить описанную окружность в равнобедренном треугольнике

Например, в прямоугольном треугольнике AOF AO=R, AF=b/2, ∠FAO=α/2. Отсюда

Как построить описанную окружность в равнобедренном треугольнике

Как построить описанную окружность в равнобедренном треугольнике

Как построить описанную окружность в равнобедренном треугольнике

IV. В равнобедренном тупоугольном треугольнике центр описанной окружности лежит вне треугольника, напротив его вершины.

Радиус находят по тем же формулам, что и для остроугольного треугольника.

V. В равнобедренном прямоугольном треугольнике центр описанной окружности лежит на середине гипотенузы, радиус равен половине гипотенузы (то есть половине основания треугольника).

Видео:Геометрия - Построение правильного треугольникаСкачать

Геометрия - Построение правильного треугольника

Please wait.

Видео:Как разделить окружность на 3 равные части или как вписать равнобедренный треугольник в окружностьСкачать

Как разделить окружность на 3 равные части или как вписать равнобедренный треугольник в окружность

We are checking your browser. mathvox.ru

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

Видео:Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Окружность вписана в равнобедренный треугольник. Найти её радиус.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6cfeacf619201625 • Your IP : 85.95.179.65 • Performance & security by Cloudflare

🔥 Видео

найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

Как найти диаметр окружности, описанной около равнобедренного треугольникаСкачать

Как найти диаметр окружности, описанной около равнобедренного треугольника

Задача 6 №27900 ЕГЭ по математике. Урок 128Скачать

Задача 6 №27900 ЕГЭ по математике. Урок 128

Геометрия Найдите радиус окружности описанной около равнобедренного треугольника с основанием 16 смСкачать

Геометрия Найдите радиус окружности описанной около равнобедренного треугольника с основанием 16 см

Нахождение радиуса окружности, описанной около равнобедренного треугольника.Скачать

Нахождение радиуса окружности, описанной около равнобедренного треугольника.
Поделиться или сохранить к себе: