Как построить описанную окружность около тупоугольного треугольника

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов
Как построить описанную окружность около тупоугольного треугольникаСерединный перпендикуляр к отрезку
Как построить описанную окружность около тупоугольного треугольникаОкружность описанная около треугольника
Как построить описанную окружность около тупоугольного треугольникаСвойства описанной около треугольника окружности. Теорема синусов
Как построить описанную окружность около тупоугольного треугольникаДоказательства теорем о свойствах описанной около треугольника окружности

Как построить описанную окружность около тупоугольного треугольника

Видео:Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Как построить описанную окружность около тупоугольного треугольника

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Как построить описанную окружность около тупоугольного треугольника

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Как построить описанную окружность около тупоугольного треугольника

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Как построить описанную окружность около тупоугольного треугольника

Как построить описанную окружность около тупоугольного треугольника

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Как построить описанную окружность около тупоугольного треугольника

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Как построить описанную окружность около тупоугольного треугольника

Как построить описанную окружность около тупоугольного треугольника

Полученное противоречие и завершает доказательство теоремы 2

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Как построить описанную окружность около тупоугольного треугольника

Видео:№711. Начертите три треугольника: тупоугольный, прямоугольный и равносторонний. ДляСкачать

№711. Начертите три треугольника: тупоугольный, прямоугольный и равносторонний. Для

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Как построить описанную окружность около тупоугольного треугольника,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

Как построить описанную окружность около тупоугольного треугольника

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Как построить описанную окружность около тупоугольного треугольникаВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаКак построить описанную окружность около тупоугольного треугольникаОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиКак построить описанную окружность около тупоугольного треугольникаЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиКак построить описанную окружность около тупоугольного треугольникаЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовКак построить описанную окружность около тупоугольного треугольника
Площадь треугольникаКак построить описанную окружность около тупоугольного треугольника
Радиус описанной окружностиКак построить описанную окружность около тупоугольного треугольника
Серединные перпендикуляры к сторонам треугольника
Как построить описанную окружность около тупоугольного треугольника

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольникаКак построить описанную окружность около тупоугольного треугольника

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружностиКак построить описанную окружность около тупоугольного треугольника

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружностиКак построить описанную окружность около тупоугольного треугольника

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружностиКак построить описанную окружность около тупоугольного треугольника

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусовКак построить описанную окружность около тупоугольного треугольника

Для любого треугольника справедливы равенства (теорема синусов):

Как построить описанную окружность около тупоугольного треугольника,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаКак построить описанную окружность около тупоугольного треугольника

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиКак построить описанную окружность около тупоугольного треугольника

Для любого треугольника справедливо равенство:

Как построить описанную окружность около тупоугольного треугольника

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Видео:Строим вписанную в данный треугольник окружность (Задача 2).Скачать

Строим вписанную в данный треугольник окружность (Задача 2).

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Как построить описанную окружность около тупоугольного треугольника

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Как построить описанную окружность около тупоугольного треугольника

Как построить описанную окружность около тупоугольного треугольника.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

l = 2Rsin φ .(1)

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Как построить описанную окружность около тупоугольного треугольника

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

Видео:начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.Скачать

начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.

Геометрия

Именная карта банка для детей
с крутым дизайном, +200 бонусов

Закажи свою собственную карту банка и получи бонусы

План урока:

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Точка пересечения биссектрис в треугольнике

Напомним, что для каждой прямой и точки можно вычислить расстояние между ними. Оно представляет собой длину перпендикуляра, который из точки проведен к этой прямой.

Если есть пара прямых и одна точка, то можно определить расстояние от точки до каждой из прямых. В случае, когда эти расстояния одинаковы, точку называют равноудаленной от обеих прямых.

Например, на этом рисунке длины AВ и ВС одинаковы, а потому точка А – равноудаленная от прямых m и n.

Сформулируем важную теорему.

Для доказательства опустим из произвольно выбранной точки М, принадлежащей биссектрисе ∠AВС, расстояния МК и МL на AВ и ВС:

Сравним ∆ВКМ и ∆ВМL. Это два прямоугольных треуг-ка, у которых общая гипотенуза ВМ, а также одинаковы острые углы ∠МВL и ∠KBM (они одинаковы, ведь биссектриса по определению разбивает угол пополам). Тогда ∆BKM и ∆BLM равны, и отрезки КM и МС также одинаковы, ч. т. д.

Верно и обратное утверждение.

Для доказательства можно использовать тот же рисунок. Пусть точка М находится на одинаковом расстоянии от ВК и ВL. То есть КМ = МL. Тогда ∆ВКМ и ∆ВМL снова оказываются равными, но уже как прямоугольные треуг-ки с одинаковыми катетом и гипотенузой. Из равенства треуг-ков вытекает, что

Действительно, если в ∆AВС построить биссектрисы ∠А и ∠В, то они должны будут пересечься в какой-нибудь точке О:

Опустим из О перпендикуляры на все стороны треуг-ка. Так как О принадлежит биссектрисе ∠А, то она находится на одинаковом расстоянии от АС и AВ, то есть

Из него следует, что О также находится на одном расстоянии от АС и ВС и потому принадлежит биссектрисе ∠С. Получается, что О – общая точка для всех трех биссектрис ∆AВС.

Видео:№701. Начертите три треугольника: остроугольный, прямоугольный и тупоугольный. В каждыйСкачать

№701. Начертите три треугольника: остроугольный, прямоугольный и тупоугольный. В каждый

Серединный перпендикуляр

Введем новое понятие – серединный перпендикуляр.

На рисунке О – это середина AВ. Через нее проведена прямая m, образующая прямой угол с AВ. Тогда по определению m – это серединный перпендикуляр:

Рассмотрим две теоремы, которые связаны с серединным перпендикуляром и являются обратными друг для друга.

Сначала рассмотрим первое утверждение. Пусть точка М находится на серединном перпендикуляре, проведенному к AВ. Нам надо

Изучим∆АОМ и ∆ВОМ. Они прямоугольные, имеют одинаковые катеты АО и ОВ (ведь О – середина AВ) и общий катетОМ. Получается, что ∆АОМ и ∆ВОМ равны. Значит, одинаковы и отрезки АМ и МВ, ч. т. д.

Во второй теореме уже изначально известно, что

Надо доказать, что М принадлежит серединному перпендикуляру. Изучим∆АМВ, он равнобедренный, ведь АМ = МВ. Теперь из М опустим медиану МО на AВ. ∆АМВ – равнобедренный, поэтому эта медиана окажется также и высотой. Получается, что отрезок ОМ перпендикулярен AВ и одновременно делит его пополам. Значит, ОМ – это серединный перпендикуляр.

Из этих двух теорем вытекает важное утверждение:

Действительно, в ∆AВС проведем серединные перпендикуляры к сторонам треугольника AВ и АС:

Здесь N и K – середины сторон AN и AC, а О – точка пересечения серединных перпендикуляров в треугольнике. Так как О лежит на серединном перпендикуляре, проведенному к AВ, то справедливо равенство

Аналогично О равноудаленная от вершин А и С, ведь она лежит на серединном перпендикуляре, проведенному к АС:

В итоге можно составить двойное равенство:

Оно показывает, что О также расположена на одном расстоянии от В и С. Отсюда вытекает, что она должна принадлежать серединному перпендикуляру, проведенному к ВС, ч. т. д.

Видео:Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

Вписанная и описанная окружности | Лайфхак для запоминания

Точка пересечения высот треугольника

Следующая теорема касается высот треуг-ка.

Для доказательства выполним такое построение – через вершины ∆AВС проведем прямые, которые будут параллельны сторонам ∆АВС. Они образуют новый ∆А1В1С1:

Из условий AВ||A1В1 и АС||А1С1 вытекает, что четырехуг-к АСА1В – это параллелограмм. Значит, у него одинаковы противоположные стороны:

Аналогично можно показать, что четырехуг-ки AВСВ1 и АСВС1 – также параллелограммы, откуда вытекают равенства:

Теперь обозначим на рисунке все отрезки, равные AВ, одной черточкой, отрезки, равные ВС – двумя чертами, в тремя черточками отметим те отрезки, равные АС:

Получается, что А, В и С являются серединами сторон А1В1, А1С1 и В1С1. Построим в ∆А1В1С1 серединные перпендикуляры. Они по определению будут проходить через середины А, В и С и при этом будут иметь общую точку О:

Заметим, что проведенные перпендикуляры будут также перпендикулярны сторонам исходного ∆AВС. Например, ОВ⊥А1С1 и А1С1|| АС, значит, ОВ⊥АС (прямая, перпендикулярная одной из двух параллельных прямых, будет перпендикулярна и второй прямой). Аналогично можно продемонстрировать, что АО⊥ВС, а СО⊥AВ. Другими словами, прямые АО, ВО и СО оказываются высотами, и при этом они пересеклись точке О. Так как ∆AВС был выбран произвольно, то получается, что в любом треуг-ке высоты пересекутся в одной точке, ч. т. д.

Ранее, изучая подобие треуг-ков, мы уже выяснили, что и медианы треуг-ка будут пересекаться в одной точке. В итоге можно сформулировать следующее утверждение:

Задание. На рисунке MKN = 66°. Вычислите величину FNO.

Решение. Судя по рисунку, в точке О пересекаются высоты MF и KE. Но тогда и прямая ON также должна быть высотой. Достроим рисунок с учетом этого факта:

Теперь на рисунке множество прямоугольных треуг-ков. Напомним, что у каждого из них острые углы в сумме составляют 90°. Например, в ∆MKF

Задание. В ∆AВС биссектрисы АА1 и ВВ1 пересеклись в точке М, причем ∠АМВ = 128°. Вычислите ∠МСВ1.

Решение. Изучим ∆АМВ. В сумме его углы должны составлять 180°:

Ясно, что МС – это биссектриса ∠АСВ, ведь она проходит через общую точку двух других биссектрис ∆AВС. То есть МС делит ∠АСВ пополам:

Задание. На рисунке RO = 20. Вычислите длину OK:

Решение. На рисунке видно, что OM и ON – это серединные перпендикуляры. Отсюда вытекает, что точка О равноудалена от ОР и OR:

Теперь можно рассмотреть ∆РОК. Он прямоугольный, и в нем есть ∠30°. Напомним, что катет, лежащий против такого угла, вдвое короче гипотенузы:

OK = OP/2 = 20/2 = 10

Видео:ВПИСАННАЯ И ОПИСАННАЯ ОКРУЖНОСТЬ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ВПИСАННАЯ И ОПИСАННАЯ ОКРУЖНОСТЬ 😉 #егэ #математика #профильныйегэ #shorts #огэ

Вписанная окружность

Иногда в многоугольник можно вписать окруж-ть. Это значит, что возможно построить такую окруж-ть (ее именуют вписанной окружностью), которая будет касаться каждой стороны многоуг-ка (его в таком случае называют описанным около окружности многоуг-ком).

Для того чтобы, построить вписанную в многоуг-к окруж-ть, надо сначала определить, возможно ли вообще это сделать. Оказывается, что в треуг-к окруж-ть можно вписать всегда.

Действительно, построим произвольный ∆AВС и биссектрисы в нем. Они пересекутся в какой-нибудь точке О. Далее из О проведем перпендикуляры на стороны ∆AВС.

Эти перпендикуляры являются, по сути, расстояниями от О до сторон углов ∠А, ∠В и ∠С. По свойству биссектрисы они окажутся одинаковыми. Теперь проведем окруж-ть с центром в О, радиус которой будет равен длине этих перпендикуляров.

Ясно, что точки M, L и K будут принадлежать окруж-ти, ведь они находятся на расстоянии R от ее центра. При этом отрезки OK, OM, OL будут радиусами. Заметим, что прямая AВ перпендикулярна радиусу OK, а потому является касательной. По той же причине ВС и АС также окажутся касательными. В итоге окруж-ть оказывается вписанной, ч. т. д.

В данном доказательстве мы не просто доказали, что для каждого треуг-ка существует вписанная окруж-ть, но и показали, как ее построить. Надо сначала провести биссектрисы углов, найти точку их пересечения (это и будет центр вписанной окруж-ти), после чего из этой точки надо опустить перпендикуляр на одну из сторон треуг-ка. Осталось лишь построить окруж-ть, радиус которой будет этот перпендикуляр. Заметим, что так как в треуг-ке есть только одна точка пересечения биссектрис, то и окруж-ть в треуг-к можно вписать лишь одну.

Ещё раз посмотрим на окружность, вписанную в треугольник:

Заметим, что радиусы OK, ОМ и ОL одновременно являются и высотами в ∆AВО, ∆АОС и ∆ВОС. Тогда через радиус можно выразить площади этих треуг-ков:

Сумма сторон AВ, АС и ВС – это периметр ∆AВС (его обозначают буквой Р), а потому можно записать, что

Эту формулу часто используют не для вычисления площади треуг-ка, а для нахождения радиуса вписанной окружности.

Задание. Найдите радиус окруж-ти, вписанной в равнобедренный треуг-к, основание которого имеет длину 20, а боковая сторона – 26.

Теперь надо найти его площадь. Для этого опустим на основание MN высоту KH, которая одновременно будет и медианой:

Отрезок HN будет вдвое короче MN:

Зная в ∆MKN высоту и основание, к которой она проведена, сможем найти его площадь:

Теперь запишем формулу площади, содержащую радиус вписанной окруж-ти, и найдем из нее этот радиус:

Задание. В прямоугольный треуг-к, длина гипотенузы которого составляет 52, вписана окруж-ть радиусом 8. Вычислите периметр этого треуг-ка.

Решение. Проведем радиусы ОМ и ОК из центра окруж-ти к катетам:

Буквой N обозначим точку касания окруж-ти и гипотенузы. Сначала изучим четырехуг-к МОКС. В нем∠С – прямой, ведь ∆AВС – прямоугольный, а ∠ОМС и ∠ОКС также составляют 90°, так как образованы радиусом и касательной. Тогда и ∠МОК тоже должен быть прямым. Значит, МОКС – это квадрат, и его стороны одинаковы:

Заметим, что отрезки AN и AM одинаковы, ведь они представляют собой отрезки касательных, которые построены из одной точки:

Аналогично одинаковы ВК и BN:

Тогда периметр можно записать так:

Задание. Вписанная в ∆AВС окруж-ть касается его сторон AВ, ВС и АС в точках Е, М и F. Известно, что АЕ = 4, СF = 6, МВ = 10. Определите периметр ∆AВС.

Решение. Заметим, отрезки касательных, проведенных к окруж-ти из одной точки, одинаковы, поэтому

Это позволяет найти каждую из сторон ∆AВС:

В многоугольники, имеющие 4 и более вершины, вписать окруж-ть можно лишь в отдельных случаях. В частности, четырехуг-к должен для этого обладать особым свойством.

Действительно, пусть в четырехуг-к AВСD вписана окруж-ть. Тогда отрезки касательных, которые построены из точек А, В, С и D, будут одинаковыми.

Обозначим их маленькими буквами a, b, cи d:

Тогда стороны четырехуг-ка будут вычисляться так:

Действительно, пусть есть четырехуг-к AВСD, у которого

AD + BC = CD + AB (1)

Проведем биссектрисы ∠Aи ∠B, они пересекутся в некоторой точке О. Эта точка окажется равноудаленной от сторон AD, AB и ВС, то есть можно построить окруж-ть, которая коснется этих трех прямых. Докажем, что она также коснется и CD. Возможны три варианта:

1) СD вообще не пересекается с окруж-тью;

2) CD – секущая, и пересекается с окруж-тью в 2 точках;

3) CD – касательная.

Сначала рассмотрим первый вариант, когда СD и окруж-ть не имеют общих точек. Тогда можно провести касательную С’D’, параллельную CD:

Мы видим, что существует описанный четырехуг-к AВС’D’, а значит, суммы его противоположных сторон будут одинаковыми:

Мы получили, что в четырехуг-ке С’D’DC сторона CD равна сумме трех других сторон. Это невозможно, то есть мы получили противоречие. Значит, принятое нами предположение о том, что CD не имеет общих точек с окруж-тью, является ошибочным. С помощью аналогичных утверждений можно отбросить и вариант, согласно которому CD – это секущая. Остается один вариант, по которому СD – касательная, ч. т. д.

Задание. В четырехуг-к MCЕА вписана окруж-ть, причем МС = 5, СЕ = 10, АЕ = 8. Какова длина АМ?

Решение. Если в четырехуг-к можно вписать окруж-ть, то суммы его противоположных сторон одинаковы:

Рассмотрим частные случаи четырехуг-ков. Очевидно, что в ромб и квадрат вписать окруж-ть можно, ведь у них одинаковы все стороны, значит, одинаковы и суммы противоположных сторон. С другой стороны, если параллелограмм НЕ является ромбом, то есть его смежные стороны различны, то вписать в него окруж-ть не получится. Также ее нельзя вписать и в прямоугольник, если он НЕ является квадратом:

Ранее мы составили формулу, которая связывала периметр треуг-ка с его площадью и радиусом вписанной окруж-ти. Оказывается, она справедлива и для четырехуг-ка. Действительно, пусть есть произвольный описанный четырехуг-к AВСD. Соединим центр вписанной окруж-ти с вершинами, а также проведем из нее радиусы к точкам касания:

В результате мы разбили AВСD на ∆АОD, ∆DOC, ∆COВ и ∆АОВ, причем высотой для каждого из них являются радиусы длиной r. Тогда площади этих треуг-ков можно вычислить так:

Аналогичным образом эту формулу можно доказать и для пятиугольника, и для шестиугольника, и т. д.

Задание. В четырехуг-к AВСD, у которого стороны AB и CD соответственно составляют 13 и 8, вписана окруж-ть радиусом 5. Какова площадь AВСD?

Мы можем найти сумму сторон AВ и CD:

AB + CD = 13 + 8 = 21

Так как в четырехуг-к вписана окруж-ть, то и сумма двух других сторон, AD и BC, будет такой же:

AD + BC = AB + CD = 21

Теперь можно вычислить и периметр AВСD:

P = AB + CD + AD + BC = 21 + 21 = 42

Осталось только применить формулу и рассчитать площадь:

Задание. В квадрат вписана окруж-ть с радиусом 6. Какова площадь квадрата?

Решение. Проведем в окруж-ти радиусы, которые коснутся противоположных сторон квадрата:

В результате получится прямоугольник ВСНК. КН – диаметр окруж-ти, поэтому он вдвое длиннее радиуса:

В прямоугольнике противоположные стороны одинаковы, поэтому

Но ВС – это сторона квадрата, площадь которого и надо найти. Для этого ВС надо возвести в квадрат:

S = BC 2 = 12 2 = 144

Видео:найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

Описанная окружность

Возможна и ситуация, при которой не окруж-ть вписана в многоуг-к, а наоборот, многоуг-к в окруж-ть. В таком случае все его вершины будут лежать на окруж-ти.

Есть несколько важных теорем, касающихся описанных окружностей.

Для доказательства построим в произвольном ∆AВС серединные перпендикуляры. Они пересекутся в некоторой точке О:

Каждая точка, лежащая на серединном перпендикуляре, равноудалена от концов отрезка, к которому этот перпендикуляр проведен. Значит, и точка О равноудалена от вершин ∆AВС:

Но тогда из О можно провести окруж-ть, на которой будут лежать точки А, В и С. Она как раз и окажется окружностью, описанной около треугольника. Так как серединные перпендикуляры пересекаются только в одной точке, то и окруж-ть около треуг-ка можно описать лишь одну.

Из теоремы следует важный вывод:

Действительно, три точки, не лежащие на прямой, образуют на плоскости треуг-к.Окруж-ть, проведенная через его вершины, по определению и будет описанной окруж-тью.

Задание. Около равнобедренного треуг-ка с основанием длиной 6 описана окруж-ть радиусом 5. Какова длина боковых сторон этого треуг-ка?

Решение: Проведем радиусы ОА, ОВ и ОС к вершинам вписанного треуг-ка, а на основание ВС опустим перпендикуляр:

Стоит обратить внимание, что точки А, О и Н лежат на одной прямой. Это высота, проведенная к основанию. Она же, по свойству равнобедренного треуг-ка, является медианой, то есть Н – середина ВС. Тогда ОН оказывается серединным перпендикуляром.

Сначала найдем ВН, он равен половине ВС:

Далее изучим ∆ОНВ. Он прямоугольный, то есть для него верна теорема Пифагора:

Задание. Выведите формулу, которая связывает длину стороны равностороннего треуг-ка с радиусом описанной окружности.

Решение. Обозначим буквой a сторону треуг-ка, а буквой R – радиус описанной окруж-ти. Также проведем один серединный перпендикуляр:

Так как ∆AВС – равносторонний, то все его углы, в частности, ∠AВС, составляют 60°.

Заметим, что ∆ВОС и ∆АОВ равны по трем одинаковым сторонам, поэтому

В четырехуг-к окруж-ть удается вписать не всегда. Для этого должно соблюдаться одно условие:

Действительно, пусть около четырехуг-ка ABCD описана окруж-ть:

Тогда вся окруж-ть может быть разбита на две дуги: ⋃ВАD и ⋃ВСD. Их сумма составляет 360°:

Аналогично доказывается утверждение и для другой пары противоположных углов, ∠ADC и ∠ABC.

Обратное утверждение также справедливо:

Докажем эту теорему методом от «противного». Пусть есть четырехуг-к AВСD, у которого сумма противоположных углов составляет 180°, но вокруг него нельзя описать окруж-ть. Тогда проведем окруж-ть через любые три его вершины. Четвертая вершина (пусть это будет D) не может оказаться на окруж-ти. То есть она находится либо внутри окруж-ти, либо вне ее. Сначала рассмотрим случай, когда точка оказывается внутри окруж-ти:

Продолжим прямые AD и CD до пересечения окруж-ти в точках А’ и C’, а потом выберем произвольную точку D’ на окруж-ти между ними.

Теперь сравним ∆АСD и ∆АСD’. У обоих сумма углов одинакова и составляет 180°:

Получается, что ∠D и ∠D’ должны быть равны, но ранее мы показали, что ∠D больше. Это противоречие означает, что точка D не может быть внутри окруж-ти. Аналогичным образом рассматривается второй случай, когда D лежит вне окруж-ти:

Здесь, рассматривая ∆АСD и АСD’, можно показать, что ∠D меньше, чем ∠D’. Однако они должны быть равны друг другу, ведь в сумме с∠В должны давать 180°.

Задание. В окруж-ть вписан четырехуг-к AВСD, причем∠А составляет 110°, а ∠В – 62°. Найдите два других угла четырехуг-ка.

Здесь надо просто использовать тот факт, что противоположные углы в AВСD должны давать в сумме 180°:

Задание. Докажите, что если трапеция вписана в окруж-ть, то она равнобедренная.

Пусть в окруж-ть вписана трапеция AВСD, причем AD и ВС– ее основания. Тогда∠А и ∠В – это односторонние углы при параллельных прямых ВС и AD и секущей AВ, и в сумме они дают 180°. Но так как AВСD вписана в окруж-ть, то и ее противоположные углы, ∠А и ∠С, также должны составлять в сумме 180°:

Естественно, эти равенства могут одновременно справедливыми только в том случае, если∠В и ∠С одинаковы. Они являются углами при основании трапеции. Если они одинаковы, то трапеция – равнобедренная (это признак равнобедренной трапеции).

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Построение вписанной и описанной окружности

Дополнительно уточним, как выполнить построение вписанной окружности либо описанной окруж-ти. Мы уже говорили, в центр вписанной окружности в треуг-ке – это центр пересечения его биссектрис, ведь он равноудален от сторон. То же самое относится и к многоуг-кам. Вписанная окруж-ть равноудалена от его сторон, поэтому будет лежать на биссектрисе каждого из углов многоуг-ка. При этом строить биссектрисы всех углов не нужно, достаточно выбрать любые два из них. Найдя таким способом центр вписанной окруж-ти, из нее надо опустить перпендикуляр на любую сторону – он и будет радиусом окруж-ти:

При построении описанной окружности нужно помнить, что ее центр описанной окруж-ти находится уже в той точке, где пересекаются серединные перпендикуляры. Снова достаточно провести только два перпендикуляра:

Итак, мы узнали про вписанные и описанные окруж-ти, как определять их центры, и какими свойствами обладают вписанные и описанные многоуг-ки. Это поможет решить ряд задач на экзаменах, в том числе и на ЕГЭ.

Видео:Радиус окружности, описанной около прямоугольного треугольника, равен 4. Найдите гипотенузу.Скачать

Радиус окружности, описанной около прямоугольного треугольника, равен 4. Найдите гипотенузу.

Please wait.

Видео:Вписанная и описанная около равнобедренного треугольника, окружностьСкачать

Вписанная и описанная около равнобедренного треугольника,  окружность

We are checking your browser. mathvox.ru

Видео:№705. Около прямоугольного треугольника ABC с прямым углом С описана окружность. Найдите радиусСкачать

№705. Около прямоугольного треугольника ABC с прямым углом С описана окружность. Найдите радиус

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

Видео:7 класс, 32 урок, Остроугольный, прямоугольный и тупоугольный треугольникиСкачать

7 класс, 32 урок, Остроугольный, прямоугольный и тупоугольный треугольники

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6d2d8d6aa8724981 • Your IP : 85.95.179.65 • Performance & security by Cloudflare

💥 Видео

№704. Окружность с центром О описана около прямоугольного треугольника, а) ДокажитеСкачать

№704. Окружность с центром О описана около прямоугольного треугольника, а) Докажите

Как построить окружность, описанную около треугольника, в программе ГЕОГЕБРАСкачать

Как построить окружность, описанную около треугольника, в программе ГЕОГЕБРА

ЗАДАНИЕ 1| ЕГЭ ПРОФИЛЬ| Радиус окружности, описанной около прямоугольного треугольника, равен 4. НайСкачать

ЗАДАНИЕ 1| ЕГЭ ПРОФИЛЬ| Радиус окружности, описанной около прямоугольного треугольника, равен 4. Най

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Построить окружность, описанную около треугольникаСкачать

Построить окружность, описанную около треугольника
Поделиться или сохранить к себе: