Задача, обратная нахождению значения синуса, косинуса, тангенса и котангенса данного угла (числа), подразумевает нахождение угла (числа) по известным значениям тригонометрических функций. Она приводит к понятиям арксинуса, арккосинуса, арктангенса и арккотангенса числа.
В этой статье мы дадим определения арксинуса, арккосинуса, арктангенса и арккотангенса числа, введем принятые обозначения, а также приведем примеры арксинуса, арккосинуса, арктангенса и арккотангенса. В заключение упомянем про аркфункции и покажем, как арксинус, арккосинус, арктангенс и арккотангенс связаны с единичной окружностью.
Навигация по странице.
- Определения, обозначения, примеры
- Арксинус, арккосинус, арктангенс и арккотангенс как угол
- Арксинус, арккосинус, арктангенс и арккотангенс как число
- Арктангенс и арккотангенс. Онлайн калькулятор
- Арктангенс и арккотангенс − теория, примеры и решения
- Функция арктангенс и ее график
- Функция арккотангенс и ее график
- Обратная тригонометрическая функция: Арктангенс (arctg)
- Определение
- График арктангенса
- Свойства арктангенса
- 💡 Видео
Видео:Как видеть тангенс? Тангенс угла с помощью единичного круга.Скачать
Определения, обозначения, примеры
Арксинус, арккосинус, арктангенс и арккотангенс можно определить как угол и как число. Это связано с тем, что мы определили синус, косинус, тангенс и котангенс как угла, так и числа (смотрите синус, косинус, тангенс и котангенс в тригонометрии). Остановимся на обоих подходах к определению арксинуса, арккосинуса, арктангенса и арккотангенса.
Арксинус, арккосинус, арктангенс и арккотангенс как угол
Пусть про угол альфа α известно лишь то, что его синус равен числу 1/2 , то есть, sinα=1/2 . Последнее равенство определяет угол α неоднозначно, так как ему удовлетворяет бесконечное множество углов α=(−1) k ·30°+180°·k ( α=(−1) k ·π/6+π·k ), где k∈Z . Однако, если потребовать, чтобы величина угла α в градусах принадлежала отрезку [−90, 90] (в радианах – отрезку [−π/2, π/2] ), то равенство sinα=1/2 будет определять угол альфа однозначно. При этом условии равенству удовлетворяет единственный угол в 30 градусов ( π/6 радианов).
Вообще, равенство sinα=a (не путайте a и альфа: a и α ) при любом числе a∈[−1, 1] и условии −90°≤α≤90° ( −π/2≤α≤π/2 ) определяет единственный угол α . Этот угол называют арксинусом числа a .
Арксинус числа a∈[−1, 1] – это угол −90°≤α≤90° ( −π/2≤α≤π/2 ), синус которого равен a .
Аналогично определяются арккосинус, арктангенс и арккотангенс.
Арккосинус числа a∈[−1, 1] – это угол 0°≤α≤180° ( 0≤α≤π ), косинус которого равен a .
Арктангенс числа a∈(−∞, +∞) – это угол −90° ( −π/2 ), тангенс которого равен a .
Арккотангенс числа a∈(−∞, +∞) – это угол 0° ( 0 ), котангенс которого равен a .
Для записи арксинуса, арккосинуса, арктангенса и арккотангенса приняты следующие обозначения: arcsin , arccos , arctg и arcctg . То есть, арксинус числа a можно записать как arcsin a , арккосинус, арктангенс и арккотангенс числа a запишутся соответственно как arccos a , arctg a и arcctg a .
Также можно встретить обозначения arctan и arccot , они являются другой формой обозначения арктангенса и арккотангенса, которая принята в англоязычной литературе. Мы же арктангенс и арккотангенс будем обозначать как arctg и arcctg .
В свете введенных обозначений, определения арксинуса, арккосинуса, арктангенса и арккотангенса числа можно записать более формально:
arcsin a , a∈[−1, 1] , есть такой угол α , что −90°≤α≤90° ( −π/2≤α≤π/2 ) и sinα=a ;
arccos a , a∈[−1, 1] , есть такой угол α , что 0°≤α≤180° ( 0≤α≤π ) и cosα=a ;
arctg a , a∈(−∞, +∞) , есть такой угол α , что −90° ( −π/2 ) и tgα=a ;
arcctg a , a∈(−∞, +∞) , есть такой угол α , что 0° ( 0 ) и ctgα=a .
Подчеркнем, что арксинус и арккосинус числа определен для чисел, принадлежащих отрезку [−1, 1] , для остальных чисел арксинус и арккосинус не определен. Например, не имеет смысла запись arcsin2 . Аналогично не определен арксинус пяти, арксинус минус корня из трех, арккосинус семи целых двух третьих и арккосинус минус пи, так как числа 2 , 5 , , −π выходят за пределы числового отрезка от −1 до 1 . В свою очередь записи arctg a и arcctg a имеют смысл для любого действительного числа a , например, имеют смысл записи arctg0 , arctg(−500,2) , arcctg(6·π+1) и т.п.
Теперь можно привести примеры арксинуса, арккосинуса, арктангенса и арккотангенса числа.
Начнем с примеров арксинуса. Определение арксинуса позволяет утверждать, что угол π/3 является арксинусом числа , то есть, (здесь и α=π/3 ). Действительно, число принадлежит отрезку [−1, 1] , угол π/3 лежит в пределах от −π/2 до π/2 и . Приведем еще несколько примеров арксинуса числа: arcsin(−1)=−90° , arcsin(0,5)=π/6 , .
А вот π/10 не является арксинусом 1/2 , так как sin(π/10)≠1/2 . Еще пример: несмотря на то, что синус 270 градусов равен −1 , угол 270 градусов не является арксинусом минус единицы, так как 270 градусов не является углом в пределах от −90 до 90 градусов. Более того, угол 270 градусов вообще не может быть арксинусом какого-либо числа, так как арксинус числа должен лежать в пределах от −90 до 90 градусов.
Для полноты картины приведем примеры арккосинуса, арктангенса и арккотангенса числа. Например, угол 0 радианов является арккосинусом единицы, то есть, arccos1=0 (так как выполняются все условия из определения арккосинуса: число 1 принадлежит отрезку от −1 до 1 , угол нуль радианов лежит в пределах от нуля до пи включительно и cos0=1 ). Аналогично, угол π/2 есть арккосинус нуля: arccos0=π/2 . По определению арктангенса числа arctg(−1)=−π/4 или arctg(−1)=−45° . Арктангенс корня из трех равен 60 градусам ( π/3 рад). А из определения арккотангенса можно заключить, что arcctg0=π/2 , так как угол π/2 лежит в рамках от 0 до пи и ctg(π/2)=0 .
Подобный подход к определению арксинуса, арккосинуса, арктангенса и арккотангенса описан в учебнике Кочеткова [1, с. 260-278] .
Арксинус, арккосинус, арктангенс и арккотангенс как число
Когда мы имеем дело с синусом, косинусом, тангенсом и котангенсом угла, то естественно арксинус, арккосинус, арктангенс и арккотангенс определять как угол. Если же мы начинаем говорить про синус, косинус, тангенс и котангенс числа, а не угла, то естественно арксинус, арккосинус, арктангенс и арккотангенс определять уже как число.
Арксинусом числа a∈[−1, 1] называется такое число t∈[−π/2, π/2] , синус которого равен a .
Видео:Отбор арктангенса по окружности | Тригонометрия ЕГЭ 2020Скачать
Арктангенс и арккотангенс. Онлайн калькулятор
С помощю этого онлайн калькулятора можно найти арксинус и арккосинус от числа. Результат можно видеть как в градусах, так и в радианах. Теоретическую часть и численные примеры смотрите ниже.
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Видео:Тригонометрическая окружность. Как выучить?Скачать
Арктангенс и арккотангенс − теория, примеры и решения
Функция арктангенс и ее график
Функция тангенс определена в интервале [−∞;+∞] кроме точек , . и не является монотонной функцией (т.е. не является возрастающей или убывающей во всей области определения функции (Рис.1) (подробнее о функции тангенс смотрите на странице Тангенс и котангенс. Онлайн калькулятор). А для того, чтобы функция имела обратную, она должна быть монотонной.
Однако, функцию тангенс можно разделить на интервалы, где она монотонна. Эти интервалы:
, , , и т.д. |
По теореме об обратной функции, на каждом из указанных отрезков функция tg x имеет обратную функцию. Отметим, что это различные обратные функции. Однако, предпочтение отдается обратной функции в отрезке . Обратную функцию обозначают x=arctg y. Поменяв местами x и y, получим:
y=arctg x. | (1) |
Функция (1) − это функция, обратная к функции
. |
График функции арктангенс можно получить из графика функции с помощью преобразования симметрии относительно прямой y=x (Рис.2).
Свойства функции арктангенс.
- Область определения функции: .
- Область значений функции: .
- Функция является нечетной: .
- Функция возрастает.
- Функция непрерывна.
Решим тригонометрическое уравнение
В интервале для уравнения (2) существует одно t, для которого tg t=a. Это решение
Следовательно в интервале уравнение (2) имеет один корень. Так как тангенс периодичная функция с основным периодом π, то все корни уравнения (2) отличаются на πn (n∈Z), т.е.
. | (3) |
Решение уравнения (2) представлен на Рис.3:
Так как tg t − это ординат точки пересечения прямой OMt1 c прямым x=1, то для любого a на линии тангенса есть только одна точка T(1; a). Прямая OTt пересекается с окружностью с радиусом 1 в двух точках: . Но только точка соответствует интервалу , которое соответствует решению .
Пример 1. Решить тригонометрическое уравнение:
. |
Решение. Воспользуемся формулой (3):
, |
. |
Пример 2. Решить тригонометрическое уравнение:
. |
Решение. Воспользуемся формулой (3):
. |
Используя онлайн калькулятор получим:
. |
Функция арккотангенс и ее график
Как известно, функция котангенс определена в интервале [−∞;+∞] кроме точек -2π, —π 0, π, 2π. и не является монотонной функцией (Рис.4) (подробнее о функции котангенс смотрите на странице Тангенс и котангенс. Онлайн калькулятор). А для того, чтобы функция имела обратную, она должна быть монотонной.
Однако, функцию кокотангенс можно разделить на интервалы, где она монотонна. Эти интервалы:
По теореме об обратной функции, на каждом из указанных интервалов функция ctg x имеет обратную функцию. Это различные обратные функции. Однако, предпочтение отдается обратной функции в отрезке . Обратную функцию оброзначают x=arcctg y. Поменяв местами x и y, получим:
y=arcctg x. | (4) |
Функция (4) − это функция, обратная к функции
. |
График функции арккотангенс можно получить из графика функции с помощью преобразования симметрии относительно прямой y=x (Рис.5).
Свойства функции арккотангенс.
- Область определения функции: .
- Область значений функции: .
- Функция не является ни четной ни нечетной (так как функция не симметрична ни относительно начала координит, ни относительно оси Y).
- Функция убывает.
- Функция непрерывна.
Решим тригонометрическое уравнение
В интервале (0; π) для уравнения (5) существует одно t, для которого сtg t=a. Это t=arcctg a. Следовательно в интервале (0; π) уравнение (5) имеет один корень. Так как котангенс периодичная функция с основным периодом π, то общее решение уравнения (5) имеет следующий вид:
(6) |
Решения уравнения (5) можно представить на единичной окружности (Рис.6):
ctg t − это абсцис точки пересечения прямой с прямым y=1. Любому числу a на линии котангенс соответствует только одна точка . Прямая пересекется с единичной окружностью в двух точках . Но только точка соответствует интервалу (0; π), которое соответствует решению .
Пример 1. Решить тригонометрическое уравнение:
. |
Решение. Воcпользуемся формулой (6):
. |
Так как в интервале (0; π), то
. |
Пример 2. Решить следующее тригонометрическое уравнение:
. |
Решение. Используя формулу (6), имеем
. |
С помощью онлайн калькулятора вычисляем . Тогда
Видео:10 класс, 11 урок, Числовая окружностьСкачать
Обратная тригонометрическая функция: Арктангенс (arctg)
Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать
Определение
Арктангенс (arctg или arctan) – это обратная тригонометрическая функция.
Арктангенс x определяется как функция, обратная к тангенсу x , где x – любое число (x∈ℝ).
Если тангенс угла у равен х (tg y = x), значит арктангенс x равняется y :
Примечание: tg -1 x означает обратный тангенс, а не тангенс в степени -1.
Например:
arctg 1 = tg -1 1 = 45° = π/4 рад
Видео:Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружностиСкачать
График арктангенса
Функция арктангенса пишется как y = arctg (x) . График в общем виде выглядит следующим образом:
Видео:ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по МатематикеСкачать
Свойства арктангенса
Ниже в табличном виде представлены основные свойства арктангенса с формулами.
💡 Видео
Находим арктангенс. Алгебра 10 классСкачать
3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать
Преобразование выражений, содержащих арксинус, арккосинус, арктангенс и арккотангенс. 2 ч. 10 класс.Скачать
🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)Скачать
Выборка с помощью окружностиСкачать
Отбор корней по окружностиСкачать
Занятие 7. Арктангенс и арккотангенс. Основы тригонометрииСкачать
Тангенс и котангенс на тригонометрической окружности. Формулы приведения.Скачать
Алгебра 10 класс. 18 октября. Что такое arccos арккосинусСкачать
Арк-функции. Простейшие тригонометрические уравнения | Осторожно, спойлер! | Борис Трушин !Скачать
Как искать точки на тригонометрической окружности.Скачать
Тригонометрическая окружность tg x и ctg xСкачать
Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать