Геометрическое место точек в треугольнике

Геометрические места точек

Геометрическим местом точек называют множество точек, заданное условием, являющимся и свойством, и признаком.

Другими словами, все точки из рассматриваемого геометрического места точек, и только они, удовлетворяют заданному условию.

Примеры геометрических мест точек (сокращённо ГМТ ) на плоскости представлены в следующей таблице, причём геометрические места точек изображаются в таблице красным цветом .

Видео:ГМТ // ГЕОМЕТРИЧЕСКОЕ МЕСТО ТОЧЕКСкачать

ГМТ // ГЕОМЕТРИЧЕСКОЕ МЕСТО ТОЧЕК

Планиметрия. Страница 3

1 2 3 4 5 6 7 8 9 10 11 12Геометрическое место точек в треугольнике

Видео:Геометрическое место точек окружность и круг - 7 класс геометрияСкачать

Геометрическое место точек окружность и круг - 7 класс геометрия

1.Окружность

Окружностью называется фигура, состоящая из множества точек на плоскости, равноудаленных от данной точки.

Эта данная точка называется центром окружности. Расстояние от центра окружности до ее точек называется радиусом окружности.

Отрезок, соединяющий две точки окружности, называется хордой.

Если хорда проходит через центр окружности, то она называется диаметром. (Рис.1)

ОА — радиус
ВС — диаметр
DE — хорда

Геометрическое место точек в треугольнике

Рис.1 Окружность, радиус, диаметр, хорда.

Видео:Геометрическое место точек (ГМТ).ОКРУЖНОСТЬ и КРУГ §19 геометрия 7 классСкачать

Геометрическое место точек (ГМТ).ОКРУЖНОСТЬ и КРУГ §19 геометрия 7 класс

2.Окружность, описанная около треугольника

Теорема: центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров, опущенных на середины сторон данного треугольника.

Доказательство. Пусть АВС данный треугольник и точка О является центром окружности, описанной около данного треугольника. (Рис.2) Тогда отрезки ОА, ОВ, ОС равны как радиусы. Следовательно, треугольники Δ АОВ, Δ ВОС, Δ АОС — равнобедренные. А следовательно, и медианы, проведенные к серединам сторон ОК, ОЕ, ОD, являются одновременно биссектрисой и высотой. Поэтому предположение, что центр окружности, описанной около треугольника, является точкой пересечения высот, верно.

Геометрическое место точек в треугольнике

Рис.2 Теорема. Окружность, описанная около треугольника.

Видео:Геометрическое место точек | Математика ОГЭ | Дядя АртемСкачать

Геометрическое место точек | Математика ОГЭ | Дядя Артем

3.Окружность, вписанная в треугольник

Теорема. центр окружности, вписанной в треугольник, является точкой пересечения биссектрис, проведенных из его углов.

Доказательство. Пусть дан треугольник АВС. Точка О — центр вписанной окружности. (Рис. 3)

Тогда треугольник Δ АОЕ равен треугольнику Δ АОТ,
Δ СОЕ = Δ СОК,
Δ ВОК = Δ ВОТ.
Так как стороны ОА, ОВ, ОС у них общие. А ОК, ОЕ, ОТ как радиусы.
Следовательно:
∠ ЕАО = ∠ ТАО,
∠ ЕСО = ∠ КСО,
∠ КВО = ∠ ТВО.

Это значит, что точка О лежит на пересечении биссектрис АО, ВО, СО.

Геометрическое место точек в треугольнике

Рис.3 Теорема. Окружность, вписанная в треугольник.

Видео:PRO геометрические места точекСкачать

PRO геометрические места точек

4.Геометрическое место точек

Геометрическое место точек это фигура, которая представляет собой совокупность точек на плоскости, подчиняющихся определенному закону или обладающих определенным свойством.

Теорема. Геометрическим местом точек называется прямая, все точки которой равноудалены от двух данных точек, перпендикулярная отрезку, соединяющему эти точки и проходящая через его середину.

Доказательство. Пусть дан отрезок АС. Прямая А проходит через середину этого отрезка и перпендикулярна ему.(Рис. 4).

Тогда треугольники Δ АМВ и Δ СМВ равны. Так как сторона ВМ у них обшая, а стороны АМ и МС равны по условию. Следовательно точка В равноудалена от точек А и С.
Возьмем другую точку, например D, не лежащую на прямой а. Тогда сторона MD не принадлежит прямой а. А следовательно, углы AMD и DMC не равны т.к. не равны треугольники. Данное утверждение основано на том, что через точку, лежащую на прямой, можно провести только одну перпендикулярную ей прямую. И следовательно, расстояния от точки D до точек А и С не равны. Поэтому, для того чтобы расстояния от некой точки Х до двух данных точек были равны, необходимо чтобы она лежала на прямой а, которая перпендикулярна отрезку, соединяющего эти точки, и которая проходит через его середину.

Геометрическое место точек в треугольнике

Рис.4 Теорема. Геометрическое место точек.

Репетитор: Васильев Алексей Александрович

Предметы: математика, физика, информатика, экономика, программирование.

Геометрическое место точек в треугольнике2000 руб / 120 мин — подготовка к ЕГЭ и ГИА для школьников. 3000 руб / 120 мин — индивидуально (базовый уровень). 2000 руб / 120 мин — студенты.

Тел. 8 916 461-50-69, email: alexey-it@ya.ru

Геометрическое место точек в треугольнике

Пример 1

Дана окружность с центром О. И проведена касательная а из точки С к этой окружности. Доказать, что точка К лежит на основании равнобедренного треугольника ОВС, если OB = 2R. (рис.5)

По условию прямая а есть касательная к окружности, следовательно радиус, проведенный к точке касания ОК, и который лежит на прямой с, составляет прямой угол с касательной. Так как ОВ = 2R и KB = R, то прямая а будет представлять собой геометрическое место точек, так как она перпендикулярна отрезку ОВ и проходит через его середину. А следовательно, треугольники ВКС и ОКС равны по первому признаку равенства треугольников. Отсюда можно сделать вывод, что точка К будет лежать на основании равнобедренного треугольника ВОС.

Геометрическое место точек в треугольнике

Рис.5 Задача. Дана окружность с центром О.

Пример 2

Докажите, что касательная к окружности не имеет с ней других общих точек, кроме точки касания. (Рис.6)

Доказательство:

Пусть дана окружность с центром в точке О. И прямая а, которая касается окружности в точке А. Допустим, что прямая а имеет еще одну точку касаная — точку В. Тогда радиус окружности, проведенный к точкам А и В образует угол с прямой а равный 90°.

Таким образом, в равнобедренном треугольнике АОВ углы при вершинах А и В равны 90°. А это невозможно. Следовательно, мы пришли к противоречию и прямая а не может касаться окружности в двух точках.

Геометрическое место точек в треугольнике

Рис.6 Задача. Касательная к окружности.

Пример 3

Точки А,В,С лежат на одной прямой, а точка О лежит вне этой прямой. Докажите, что треугольники АОВ и ВОС не могут быть равнобедренными с основаниями АВ и ВС. (Рис.7)

Доказательство:

Допустим, что треугольники АОВ и ВОС равнобедренные с основаниями АВ и ВС. Тогда Стороны АО, ВО и СО равны. Отсюда следует, что углы ОАВ, АВО, ОВС и ОСВ равны. И ∠АВО = ∠ОВС = 90°, так как эти углы являются смежными, а их сумма равна 180°.

Таким образом, в равнобедренных треугольниках АОВ и ВОС углы при вершинах А и С равны 90°. А это невозможно, потому, что тогда стороны АО, ВО и СО были бы параллельны, так как они перпендикулярны одной прямой АС. Следовательно, мы пришли к противоречию, и треугольники АОВ и ВОС не могут быть равнобедренными с основаниями АВ и ВС.

Геометрическое место точек в треугольнике

Рис.7 Задача. Даны три точки на прямой.

Пример 4

Окружности с центрами О и О1 пересекаются в точках А и В. Докажите, что прямая АВ перпендикулярна прямой ОО1 (Рис.8)

Доказательство:

Так как окружности пересекаются в точках А и В, то эти две точки принадлежат обеим окружностям. Следовательно, отрезок ОА = ОВ, как радиусы окружности с центром в точке О. А отрезок О1А = О1В, как радиусы окружности с центром в точке О1.

Таким образом, треугольники ОАО1 и ОВО1 равны по третьему признаку равенства треугольников (по трем сторонам). А следовательно отрезки АС и ВС равны. И прямая ОО1 является геометрическим местом точек для двух данных точек А и В. Т.е. любая точка прямой ОО1 равноудалена от двух данных точек А и В. Следовательно, треугольники ОАС и ОВС равны, также как и треугольники АСО1 и ВСО1 по трем сторонам. А отсюда следует равенство углов при вершине С. Т.е. ∠ОСА = ∠ОСВ = ∠АСО1 = ∠ВСО1 = 90°.

Следовательно, можно сделать вывод, что прямая АВ перпендикулярна прямой ОО1.

Геометрическое место точек в треугольнике

Рис.8 Задача. Окружности с центрами О и О1.

Пример 5

Отрезок ВС пересекает прямую а в точке О. Расстояние от точек В и С до прямой а равны. Докажите, что точка О является серединой отрезка ВС (Рис.9)

Доказательство:

По условию задачи, расстояния от точек В и С до прямой а равны. Т.е. РС = BQ. Так как расстояние от точки до прямой представляет собой перпендикуляр, то два треугольника РОС и ВОQ, образованные двумя пересекающимися прямыми ВС и а, и перпендикулярами, опущенными на одну из них, равны по второму признаку равенства треугольников ( по стороне и двум прилегающим к ней углам: РС = BQ, углы при вершинах В и С равны как внутренние накрест лежащие, а углы при вершинах Р и Q прямые).

Из равенства треугольников РОС и ВОQ следует, что ВО = ОС.

Геометрическое место точек в треугольнике

Рис.9 Задача. Отрезок ВС пересекает прямую а .

Видео:Задача на геометрическое место точек. Подготовка к зачету по геометрии 9 класс.Скачать

Задача на геометрическое место точек. Подготовка к зачету по геометрии 9 класс.

Геометрическое место точек

Геометрическое место точек (ГМТ) — это фигура, состоящая из всех точек плоскости, удовлетворяющих определённому условию.

Чтобы выяснить, что собой представляет некоторая фигура F — геометрическое место точек, удовлетворяющих заданному условию P, нужно доказать:

1) если определённая точка принадлежит фигуре F, то она удовлетворяет заданному условию P;

2) если определённая точка удовлетворяет заданному условию P, то она принадлежит фигуре F.

(то есть требуется доказать прямую теорему — свойство P точек, принадлежащих фигуре F, и обратную теорему — признак фигуры F: если точка удовлетворяет условию P, то она принадлежит F).

Геометрическое место точек, равноудалённых от данной точки — окружность.

Это следует непосредственно из определения окружности.

Некоторые теоремы о ГМТ

1) Геометрическим местом точек, равноудалённых от двух данных точек, является серединный перпендикуляр к отрезку, соединяющему эти точки.

2) Геометрическим местом точек, равноудалённых от сторон неразвёрнутого угла, является биссектриса этого угла.

3) Геометрическим местом точек, удалённых от данной прямой на расстояние h, состоит из двух прямых, параллельных данной прямой и отстоящих от неё на h.

4) Геометрическим местом точек, равноудалённых от двух параллельных прямых, является прямая, параллельная этим прямым и проходящая через середину их общего перпендикуляра.

Понятие ГМТ часто используют при решении задач на построение.

🔥 Видео

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

ГЕОМЕТРИЧЕСКОЕ МЕСТО ТОЧЕК РАВНОУДАЛЕННЫХ ОТ СТОРОН УГЛА. Задачи на ГМТ | ГЕОМЕТРИЯ 7 классСкачать

ГЕОМЕТРИЧЕСКОЕ МЕСТО ТОЧЕК РАВНОУДАЛЕННЫХ ОТ СТОРОН УГЛА. Задачи на ГМТ | ГЕОМЕТРИЯ 7 класс

Замечательные точки треуг-ка. 8 класс.Скачать

Замечательные точки треуг-ка. 8 класс.

Лекторий ЗФТШ. М-8. Геометрическое место точек на плоскости. Примеры задач на построениеСкачать

Лекторий ЗФТШ. М-8. Геометрическое место точек на плоскости. Примеры задач на построение

Геометрическое место точек (окружность, биссектриса угла и серединный перпендикуляр отрезка)Скачать

Геометрическое место точек (окружность, биссектриса угла и серединный перпендикуляр отрезка)

Геометрическое место точекСкачать

Геометрическое место точек

Лекторий ЗФТШ. Математика 8 класс. Геометрическое место точек на плоскостиСкачать

Лекторий ЗФТШ. Математика 8 класс. Геометрическое место точек на плоскости

ГМТ Геометрическое место точек урок 1Скачать

ГМТ Геометрическое место точек  урок 1

МЕРЗЛЯК-7 ГЕОМЕТРИЯ ГЕОМЕТРИЧЕСКОЕ МЕСТО ТОЧЕК. ПАРАГРАФ 19Скачать

МЕРЗЛЯК-7 ГЕОМЕТРИЯ ГЕОМЕТРИЧЕСКОЕ МЕСТО ТОЧЕК. ПАРАГРАФ 19

ГЕОМЕТРИЧЕСКОЕ МЕСТО ТОЧЕК РАВНОУДАЛЕННЫХ ОТ КОНЦОВ ОТРЕЗКА. Задачи на ГМТ | ГЕОМЕТРИЯ 7 классСкачать

ГЕОМЕТРИЧЕСКОЕ МЕСТО ТОЧЕК РАВНОУДАЛЕННЫХ ОТ КОНЦОВ ОТРЕЗКА. Задачи на ГМТ | ГЕОМЕТРИЯ 7 класс

Геометрическое место точек Геометрия 7 классСкачать

Геометрическое место точек  Геометрия 7 класс

Геометрия. 7 класс. Урок 12 "Геометрическое место точек"Скачать

Геометрия. 7 класс. Урок 12 "Геометрическое место точек"

Геометрическое место точек внутри треугольникаСкачать

Геометрическое место точек внутри треугольника
Поделиться или сохранить к себе: