В данной публикации мы рассмотрим основные свойства высоты равнобедренного треугольника, а также разберем примеры решения задач по данной теме.
Примечание: треугольник называется равнобедренным, если две его стороны равны (боковые). Третья сторона называется основанием.
Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать
Свойства высоты в равнобедренном треугольнике
Свойство 1
В равнобедренном треугольнике две высоты, проведенные к боковым сторонам, равны.
Обратная формулировка: Если в треугольнике две высоты равны, значит он является равнобедренным.
Свойство 2
В равнобедренном треугольнике высота, опущенная на основание, одновременно является и биссектрисой, и медианой, и серединным перпендикуляром.
- BD – высота, проведенная к основанию AC;
- BD – медиана, следовательно, AD = DC;
- BD – биссектриса, следовательно, угол α равен углу β.
- BD – серединный перпендикуляр к стороне AC.
Свойство 3
Если известны стороны/углы равнобедренного треугольника, то:
1. Длина высоты ha, опущенной на основание a, вычисляется по формуле:
2. Длина высоты hb, проведенной к боковой стороне b, равняется:
p – это полупериметр треугольника, рассчитывается таким образом:
3. Высоту к боковой стороне можно найти через синус угла и длину стороны треугольника:
Примечание: к равнобедренному треугольнику, также, применимы общие свойства высоты, представленные в нашей публикации – “Высота в треугольнике abc: определение, виды, свойства”.
Видео:7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать
Пример задачи
Задача 1
Дан равнобедренный треугольник, основание которого равно 15 см, а боковая сторона – 12 см. Найдите длину высоты, опущенной к основанию.
Решение
Воспользуемся первой формулой, представленной в Свойстве 3:
Задача 2
Найдите высоту, проведенную к боковой стороне равнобедренного треугольника длиной 13 см. Основание фигуры равняется 10 см.
Решение
Для начала вычислим полупериметр треугольника:
Теперь применим соответствующую формулу для нахождения высоты (представлена в Свойстве 3):
Видео:№263. Высоты, проведенные к боковым сторонам АВ и АС остроугольного равнобедренного треугольникаСкачать
Точка пересечения высот треугольника — свойства, координаты и расположение ортоцентра
Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать
Что такое высота
Если из вершины опустить перпендикуляр на противоположную сторону, получится отрезок, который именуется высотой. В равнобедренном треугольнике 2 отрезка равны, а в равностороннем равны все 3.
У фигур с углами 90 и более градусов высота попадает на противоположную сторону. В случае острого угла дело обстоит иначе. Прямая попадет только на продолжение противоположной стороны и будет находиться вне самой фигуры. Таким образом, если все углы острые, отрезки будут находиться внутри, как и ортоцентр. В тупоугольной фигуре два из трех отрезков будут проходить за его пределами — ортоцентр окажется вне фигуры.
Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать
Свойства ортоцентра
Свойства высот треугольника, пересекающихся в одной точке, давно изучены и описаны. Согласно основному из них, все 3 высоты всегда пересекаются в одном месте. Иногда, чтобы найти это место, отрезки нужно продлить, превратив в ортогональные прямые.
Ортоцентр по отношению к фигуре может быть расположен:
- внутри;
- снаружи;
- в вершине (у прямоугольных треугольников)
Ортоцентр — важная в геометрии характеристика, влияющая на нахождение золотого сечения.
Так называется маленький треугольник, расположенный внутри основного, находящийся на пересечении его трех параметров:
Золотое сечение может представлять собой не только треугольную фигуру, но и отрезок. В правильном треугольнике медианы, биссектрисы и высоты совпадают, значит, золотое сечение превращается в точку.
Полезные факты
Местонахождение ортоцентра имеет некоторые закономерности. Их знание принесет пользу при решении задач.
Пусть:
- H — ортоцентр в ABC;
- О — центр описанной окружности.
Тогда:
- окружности, описанные вокруг АБС, АНВ, CHB, HCA, равны:
- отрезок BH вдвое длиннее отрезка АС;
- середины отрезков AC и BH разделены расстоянием, равным радиусу описанной окружности.
Задача Фаньяно
Это классическая теорема. Она возникла в процессе поиска фигур с наименьшим периметром. Теорему доказал Фаньяно — итальянский математик и инженер. Это произошло еще в начале XVIII века.
Формулировка: ортотреугольник, то есть фигура, полученная соединением трех оснований треугольника, проведенный внутри остроугольного треугольника, имеет самый маленький периметр изо всех возможных, вписанных в данную фигуру.
Площадь ортотреугольника рассчитывается по формуле:
Здесь S — площадь, а, b, c — стороны.
Существует понятие ортоцентрической системы. Оно включает в себя 3 вершины и место пересечения их высот. Любая из данных четырех точек будет являться ортоцентром треугольника, образованного тремя остальными.
Видео:Высота, биссектриса, медиана. 7 класс.Скачать
История изучения
Важное значение имеет место пересечения медиан или центр тяжести. Вместе с ортоцентром это еще одна «замечательная точка», которая была известна еще древним грекам. Так их стали называть начиная с 18 века, другое название «особенные».
Исследование этих точек стало началом для создания геометрии треугольника, основателем которой считается Леонард Эйлер. Ученый показал, что в любом треугольнике точки соединения высот, медиан и центр описанного круга находятся на одной линии, которую позже назвали прямой Эйлера.
В позапрошлом веке была обнаружена окружность 9 точек или Фейербаха. Она состоит из оснований медиан, высот и центров высот. Оказалось, что все эти точки лежат на общей окружности, центр которой находится на линии Эйлера.
Каждый отрезок, прочерченный из ортоцентра до соединения с описанной окружностью, всегда будет делиться линией Эйлера на 2 равные части.
Треугольник — удивительная фигура, изучением которой занимается целый раздел геометрии. Ортоцентр и его свойства имеют широкое применение в практической жизни, например, в строительстве. Этот показатель настолько важен и распространен, что существуют калькуляторы, позволяющие определить местонахождение точки по координатам вершин.
Видео:8 класс, 37 урок, Теорема о пересечении высот треугольникаСкачать
Теорема о пересечении высот треугольника
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
На данном уроке мы рассмотрим важную теорему о том, что высоты треугольника или их продолжения пересекаются в одной точке.
Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Основы геометрии»
📺 Видео
№255. В равнобедренном треугольнике CDE с основанием СЕ проведена высота CF.Скачать
Формулы равностороннего треугольника #shortsСкачать
Построение высоты в треугольникеСкачать
Свойства равнобедренного треугольника. 7 класс.Скачать
НАЙДИТЕ ВЫСОТУ РАВНОСТОРОННЕГО ТРЕУГОЛЬНИКАСкачать
№260. Высота, проведенная к основанию равнобедренного треугольника, равна 7,6 см, а боковая сторонаСкачать
Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать
КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольникСкачать
№685. Высоты АА1 и ВВ1 равнобедренного треугольника ABC, проведенные к боковым сторонамСкачать
Нахождение площади равнобедренного треугольника при помощи теоремы Пифагора | Геометрия | АлгебраСкачать
Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать
Равнобедренный треугольник. Определение. Свойства. Теоремы и доказательства.Скачать
Построение высоты равнобедренного треугольника с помощью циркуля и линейкиСкачать