Как пересекаются высоты равнобедренного треугольника

Свойства высоты равнобедренного треугольника

В данной публикации мы рассмотрим основные свойства высоты равнобедренного треугольника, а также разберем примеры решения задач по данной теме.

Примечание: треугольник называется равнобедренным, если две его стороны равны (боковые). Третья сторона называется основанием.

Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

Свойства высоты в равнобедренном треугольнике

Свойство 1

В равнобедренном треугольнике две высоты, проведенные к боковым сторонам, равны.

Как пересекаются высоты равнобедренного треугольника

Обратная формулировка: Если в треугольнике две высоты равны, значит он является равнобедренным.

Свойство 2

В равнобедренном треугольнике высота, опущенная на основание, одновременно является и биссектрисой, и медианой, и серединным перпендикуляром.

Как пересекаются высоты равнобедренного треугольника

  • BD – высота, проведенная к основанию AC;
  • BD – медиана, следовательно, AD = DC;
  • BD – биссектриса, следовательно, угол α равен углу β.
  • BD – серединный перпендикуляр к стороне AC.

Свойство 3

Если известны стороны/углы равнобедренного треугольника, то:

1. Длина высоты ha, опущенной на основание a, вычисляется по формуле:

Как пересекаются высоты равнобедренного треугольника

2. Длина высоты hb, проведенной к боковой стороне b, равняется:

Как пересекаются высоты равнобедренного треугольника

Как пересекаются высоты равнобедренного треугольника

p – это полупериметр треугольника, рассчитывается таким образом:

Как пересекаются высоты равнобедренного треугольника

3. Высоту к боковой стороне можно найти через синус угла и длину стороны треугольника:

Как пересекаются высоты равнобедренного треугольника

Примечание: к равнобедренному треугольнику, также, применимы общие свойства высоты, представленные в нашей публикации – “Высота в треугольнике abc: определение, виды, свойства”.

Видео:7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

Пример задачи

Задача 1
Дан равнобедренный треугольник, основание которого равно 15 см, а боковая сторона – 12 см. Найдите длину высоты, опущенной к основанию.

Решение
Воспользуемся первой формулой, представленной в Свойстве 3:

Как пересекаются высоты равнобедренного треугольника

Задача 2
Найдите высоту, проведенную к боковой стороне равнобедренного треугольника длиной 13 см. Основание фигуры равняется 10 см.

Решение
Для начала вычислим полупериметр треугольника:

Как пересекаются высоты равнобедренного треугольника

Теперь применим соответствующую формулу для нахождения высоты (представлена в Свойстве 3):

Видео:№263. Высоты, проведенные к боковым сторонам АВ и АС остроугольного равнобедренного треугольникаСкачать

№263. Высоты, проведенные к боковым сторонам АВ и АС остроугольного равнобедренного треугольника

Точка пересечения высот треугольника — свойства, координаты и расположение ортоцентра

Как пересекаются высоты равнобедренного треугольника

Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

Что такое высота

Как пересекаются высоты равнобедренного треугольника

Если из вершины опустить перпендикуляр на противоположную сторону, получится отрезок, который именуется высотой. В равнобедренном треугольнике 2 отрезка равны, а в равностороннем равны все 3.

У фигур с углами 90 и более градусов высота попадает на противоположную сторону. В случае острого угла дело обстоит иначе. Прямая попадет только на продолжение противоположной стороны и будет находиться вне самой фигуры. Таким образом, если все углы острые, отрезки будут находиться внутри, как и ортоцентр. В тупоугольной фигуре два из трех отрезков будут проходить за его пределами — ортоцентр окажется вне фигуры.

Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Свойства ортоцентра

Свойства высот треугольника, пересекающихся в одной точке, давно изучены и описаны. Согласно основному из них, все 3 высоты всегда пересекаются в одном месте. Иногда, чтобы найти это место, отрезки нужно продлить, превратив в ортогональные прямые.

Ортоцентр по отношению к фигуре может быть расположен:

  • внутри;
  • снаружи;
  • в вершине (у прямоугольных треугольников)

Ортоцентр — важная в геометрии характеристика, влияющая на нахождение золотого сечения.

Как пересекаются высоты равнобедренного треугольника

Так называется маленький треугольник, расположенный внутри основного, находящийся на пересечении его трех параметров:

Золотое сечение может представлять собой не только треугольную фигуру, но и отрезок. В правильном треугольнике медианы, биссектрисы и высоты совпадают, значит, золотое сечение превращается в точку.

Полезные факты

Местонахождение ортоцентра имеет некоторые закономерности. Их знание принесет пользу при решении задач.

Пусть:

  • H — ортоцентр в ABC;
  • О — центр описанной окружности.

Тогда:

  • окружности, описанные вокруг АБС, АНВ, CHB, HCA, равны:
  • отрезок BH вдвое длиннее отрезка АС;
  • середины отрезков AC и BH разделены расстоянием, равным радиусу описанной окружности.

Задача Фаньяно

Это классическая теорема. Она возникла в процессе поиска фигур с наименьшим периметром. Теорему доказал Фаньяно — итальянский математик и инженер. Это произошло еще в начале XVIII века.

Формулировка: ортотреугольник, то есть фигура, полученная соединением трех оснований треугольника, проведенный внутри остроугольного треугольника, имеет самый маленький периметр изо всех возможных, вписанных в данную фигуру.

Площадь ортотреугольника рассчитывается по формуле:

Как пересекаются высоты равнобедренного треугольника

Здесь S — площадь, а, b, c — стороны.

Существует понятие ортоцентрической системы. Оно включает в себя 3 вершины и место пересечения их высот. Любая из данных четырех точек будет являться ортоцентром треугольника, образованного тремя остальными.

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

История изучения

Важное значение имеет место пересечения медиан или центр тяжести. Вместе с ортоцентром это еще одна «замечательная точка», которая была известна еще древним грекам. Так их стали называть начиная с 18 века, другое название «особенные».

Как пересекаются высоты равнобедренного треугольника

Исследование этих точек стало началом для создания геометрии треугольника, основателем которой считается Леонард Эйлер. Ученый показал, что в любом треугольнике точки соединения высот, медиан и центр описанного круга находятся на одной линии, которую позже назвали прямой Эйлера.

В позапрошлом веке была обнаружена окружность 9 точек или Фейербаха. Она состоит из оснований медиан, высот и центров высот. Оказалось, что все эти точки лежат на общей окружности, центр которой находится на линии Эйлера.

Каждый отрезок, прочерченный из ортоцентра до соединения с описанной окружностью, всегда будет делиться линией Эйлера на 2 равные части.

Треугольник — удивительная фигура, изучением которой занимается целый раздел геометрии. Ортоцентр и его свойства имеют широкое применение в практической жизни, например, в строительстве. Этот показатель настолько важен и распространен, что существуют калькуляторы, позволяющие определить местонахождение точки по координатам вершин.

Видео:8 класс, 37 урок, Теорема о пересечении высот треугольникаСкачать

8 класс, 37 урок, Теорема о пересечении высот треугольника

Теорема о пересечении высот треугольника

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Как пересекаются высоты равнобедренного треугольника

На данном уроке мы рассмотрим важную теорему о том, что высоты треугольника или их продолжения пересекаются в одной точке.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Основы геометрии»

📺 Видео

№255. В равнобедренном треугольнике CDE с основанием СЕ проведена высота CF.Скачать

№255. В равнобедренном треугольнике CDE с основанием СЕ проведена высота CF.

Формулы равностороннего треугольника #shortsСкачать

Формулы равностороннего треугольника #shorts

Построение высоты в треугольникеСкачать

Построение высоты в треугольнике

Свойства равнобедренного треугольника. 7 класс.Скачать

Свойства равнобедренного треугольника. 7 класс.

НАЙДИТЕ ВЫСОТУ РАВНОСТОРОННЕГО ТРЕУГОЛЬНИКАСкачать

НАЙДИТЕ ВЫСОТУ РАВНОСТОРОННЕГО ТРЕУГОЛЬНИКА

№260. Высота, проведенная к основанию равнобедренного треугольника, равна 7,6 см, а боковая сторонаСкачать

№260. Высота, проведенная к основанию равнобедренного треугольника, равна 7,6 см, а боковая сторона

Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать

Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)

КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольникСкачать

КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольник

№685. Высоты АА1 и ВВ1 равнобедренного треугольника ABC, проведенные к боковым сторонамСкачать

№685. Высоты АА1 и ВВ1 равнобедренного треугольника ABC, проведенные к боковым сторонам

Нахождение площади равнобедренного треугольника при помощи теоремы Пифагора | Геометрия | АлгебраСкачать

Нахождение площади равнобедренного треугольника при помощи теоремы Пифагора  |  Геометрия | Алгебра

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)

Равнобедренный треугольник. Определение. Свойства. Теоремы и доказательства.Скачать

Равнобедренный треугольник. Определение. Свойства. Теоремы и доказательства.

Построение высоты равнобедренного треугольника с помощью циркуля и линейкиСкачать

Построение высоты равнобедренного треугольника с помощью циркуля и линейки
Поделиться или сохранить к себе: