- Хо́рда (от греч. χορδή — струна) в планиметрии — отрезок, соединяющий две точки данной кривой (например, окружности, эллипса, параболы, гиперболы).
Хорда находится на секущей прямой — прямой линии, пересекающей кривую в двух или более точках. Плоская фигура, заключённая между кривой и её хордой называется сегментом, а часть кривой, находящаяся между двумя крайними точками хорды называется дугой. В случае с замкнутыми кривыми (например, окружностью, эллипсом) хорда образует пару дуг с одними и теми же крайними точками по разные стороны хорды. Хорда, проходящая через центр окружности, является её диаметром. Диаметр — самая длинная хорда в окружности.
- Связанные понятия
- Упоминания в литературе
- Связанные понятия (продолжение)
- Хорда — это геометрическая струна
- Хорда — это.
- Что такое хорда в геометрии
- Свойства хорды
- Как рассчитать длину хорды
- Комментарии и отзывы (1)
- Хорда в треугольнике это
- Определение хорды
- Свойства хорды к окружности
- Свойства хорды и вписанного угла
- Свойства хорды и центрального угла
- Формулы нахождения хорды
- Решение задач
- 🔥 Видео
Связанные понятия
Упоминания в литературе
Связанные понятия (продолжение)
Говорят, что два и более объектов концентричны или коаксиальны, если они имеют один и тот же центр или ось. Окружности, правильные многоугольники, правильные многогранники и сферы могут быть концентричны друг другу (имея одну и ту же центральную точку), как могут быть концентричными и цилиндры (имея общую коаксиальную ось).
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Хорда — это геометрическая струна
Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru.
Сегодня мы подробно расскажем, что такое ХОРДА.
Слово это имеет древнегреческие корни и переводится как «струна».
Это очень точно характеризует ее внешний вид, так как хорда представляет собой прямую линию.
Видео:Теорема о диаметре, перпендикулярном хордеСкачать
Хорда — это.
Термин ХОРДА применяется сразу в нескольких областях:
В геометрии хорда – это часть прямой, которая проходит между двумя точками на окружности или эллипсе;
Но в рамках этой статьи мы подробно рассмотрим первый вариант значения термина ХОРДА. Тот, который применяют в геометрии, и который школьники подробно изучают в 7 классе.
Видео:Окружность, диаметр, хорда геометрия 7 классСкачать
Что такое хорда в геометрии
Хорда – это отрезок прямой, которая проходит через две точки на любой кривой линии. Это могут быть окружность, эллипс, гипербола или парабола.
Выглядит хорда вот так:
На этом рисунке изображены сразу две хорды – AB и CD. А есть еще частный случай, когда хорда проходит через центр окружности.
Такая хорда, на данном рисунке это отрезок AB, будет являться диаметром окружности. И как нетрудно догадаться, это самая длинная хорда, которая может быть для данного примера.
Видео:ищем хорду в окружности. огэ 1 часть геометрияСкачать
Свойства хорды
Если сравнивать хорду с другими частями окружности, то можно вывести целый ряд закономерностей.
Например, хорда и радиус:
- Если радиус поделил хорду пополам, то оба отрезка перпендикулярны друг другу. И наоборот – если хорда и радиус перпендикулярны, то радиус поделит хорду на две равные части.
- Если радиус поделил хорду на две равные половины, то он точно так же поделит на равные части и дугу окружности, которая «стягивает» эту хорду. Аналогично правдиво и обратное утверждение – если пополам делится дуга окружности, то пополам будет делиться и хорда.
- И наконец, объединяя первые два пункта. Если радиус может поделить дугу пополам, то он пересекает хорду под прямым углом.
Хорда и диаметр:
- Если диаметр разделяет хорду на две равные части, то они перпендикулярны друг другу. Верно и противоположное утверждение.
- Если диаметр разделяет пополам хорду, то точно так же делится и дуга, образованная этой хордой. Верно и обратное свойство.
- Если диаметр и хорда пересекаются под прямым углом, то он делит ее дугу пополам. Точно так же и в обратном случае.
Хорда и центр окружности:
- Если две или несколько хорд равны между собой, то они находятся на одном расстоянии до центра окружности. Верна и обратная зависимость между расстоянием от центра и длиной хорд.
- Чем длиннее хорда, тем ближе она находится к центру фигуры. И чем короче хорда, тем дальше она от центра и ближе к дуге.
- Если у хорды максимально возможная длина, то она является диаметром. А если наименьшая, то речь идет о точке.
И еще одно свойство хорд в окружности. Если взять уже знакомый нам рисунок расположенный сразу под определением, то при пересечении хорд получается вот такая зависимость – произведение частей одной хорды равна произведению частей другой:
Видео:Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать
Как рассчитать длину хорды
Длина хорды – это расстояние от одной точки пересечения с окружностью до другой. Чаще всего она обозначается латинской буквой «L».
Чтобы рассчитать длину хорды, надо знать значение радиуса и центрального угла. Формула выглядит так:
Вот и все, что мы хотели рассказать о ХОРДЕ.
Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru
Эта статья относится к рубрикам:
Комментарии и отзывы (1)
Не знаю, что делать школьникам с этими знаниями, вот мне эти хорды нигде не пригодились, далеко не всю геометрию можно направить в практическое русло.
Видео:Не знаешь как найти хорду!? Используй треугольник!Скачать
Хорда в треугольнике это
Учебный курс | Решаем задачи по геометрии |
Видео:Демо ОГЭ по математике. Задание 17. Хорда окружности.Скачать Определение хорды Часть кривой, заключенной между двумя точками хорды, называется дугой. Плоская фигура, заключенная между дугой и ее хордой называется сегментом. Хорда, проходящая через центр окружности, называется диаметром окружности. Диаметр окружности — самая длинная хорда окружности. Видео:Окружность. Длина хорды. Теорема синусов.Скачать Свойства хорды к окружности
Видео:Это Свойство Поможет Решить Задачи по Геометрии — Хорда, Окружность, Секущая (Геометрия)Скачать Свойства хорды и вписанного углаВидео:Подсчёт количества граней и рёбер у трёхмерных фигур | Фигура | ГеометрияСкачать Свойства хорды и центрального углаВидео:Откуда берется МАССА у частиц?Скачать Формулы нахождения хорды Длина хорды окружности равна удвоенному радиусу данной окружности, умноженному на синус половины центрального угла. Видео:В окружности три хордыСкачать Решение задачПримечание. Если Вы не нашли решение подходящей задачи, пишите об этом в форуме. Наверняка, курс геометрии будет дополнен.
Решение. Согласно свойству хорд AS x SB = CS x SD, тогда 2х * 3х = 5 * 12 Откуда
Решение. 3,5х + 5,5х + 3х = 360 Откуда градусные величины центральных углов равны: 90 / 2 = 45 Ответ: Величина углов треугольника равна 45 ; 52,5 ; 82,5 ; 🔥 ВидеоРадиус Хорда ДиаметрСкачать ЕГЭ-2022 ||Задание №6 || Найти длину хордыСкачать Длина окружности. Площадь круга. 6 класс.Скачать Как найти хорду в окружности, зная только высоту треугольника!?Скачать ОГЭ ЗАДАНИЕ 16 НАЙДИТЕ ДЛИНУ ХОРДЫ ОКРУЖНОСТИ ЕСЛИ РАДИУС 13 РАССТОЯНИЕ ДО ХОРДЫ 5Скачать Общая хорда двух окружностейСкачать Как найти длину хорды по радиусу и центральному углу. Геометрия 8-9 классСкачать Радиус перпендикулярен хордеСкачать |