Содержание:
По этой ссылке вы найдёте полный курс лекций по математике:
- Преобразования
- Преобразования плоскости
- Пример с решением:
- Пример с решением:
- Планиметрия (прямая и окружность)
- 1.1 Построить угол 60° с заданой стороной
- 1.2 Построить серединный перпендикуляр к отрезку
- 1.3 Середина отрезка
- 1.4 Окружность, вписанная в квадрат
- 1.6 Найти центр окружности
- 1.7 Квадрат, вписанный в окружность
- Задача Наполеона
- Дробно-линейные отображения
- 📹 Видео
Преобразования
Преобразования, наделенные таким свойством, позволяют успешно решать задачи аэро- и гидродинамики, теории упругости, теории полей различной природы и многие другие. Мы ограничимся преобразованиями плоских областей. Непрерывное отображение го = /(г) плоской области в область на плоскости называется конформным в точке , если в этой точке оно обладает свойствами постоянства растяжения и сохранения углов.
Открытые области и называются конформно эквивапентными,если существует взаимнооднозначное отображение одной из этих областей на другую, конформное в каждой точке. Теорема Римана. Любые две плоские открытые односвязные области, границы которых состоят более чем из одной точки, конформно эквивалентны. Основной проблемой при решении конкретных задач является построение по заданным плоским областям явного взаимно однозначного конформного отображения одной из них на другую.
Один изспособоврешенияэтой проблемы в плоском случае — привлечение аппарата теории функций комплексного переменного. Какужеотмечалось выше, однолистная аналитическаяфункция с отличной от нуля производной осуществляет конформное отображение своей области задания на ее образ. При построении конформных отображений весьма полезно следующее правило. Принцип соответствия границ.
Пусть в односвязной области Я) комплексной плоскости z, ограниченной контуром 7, задана однозначная аналитическая функция w = f(z), непрерывная в замыкании 9) и отражающая контур 7 на некоторый контур 7′ комплексной п/юскости w. Если при этом сохраняется направления обхода контура, то функция w — f(z) осуществляет конформное отображение области комплексной плоскости z на область З1 комплексной плоскости w, ограниченную контуром 7′ (рис. 1).
Возможно вам будут полезны данные страницы:
Цель настоящего параграфа состоит в том, чтобы, используя найденные ранее области однолистности основных элементарных фуннций комплексного переменного, научиться строить конформные отображения открытых одно-связных плосжх областей, часто встречающихся в приложениях, надвестан- КОНФОРМНЫЕ ОТОБРАЖЕНИЯ дартныс области — верхнюю полуплоскость и единичный круг (рис. 2). Для более эффективного использо- Рис.2 вания приводимой ниже таблицы полезны некоторые простейшие преобразования комплексной плоскости.
Преобразования плоскости
Преобразования плоскости, осуществляющие: 1. параллельный перенос (сдвиг на заданное комплексное число а) (рис. 3), Рис.3 2. поворот (на заданный угол 3. растяжение (fc > 1) ил и сжатие (рис. 5). Тем самым, преобразование вида 0 любой круг можно сделать единичным кругом с центром в нуле (рис. 6), любую полуплоскость можосделать верхней полуплоскостью, любой отрезок прямой можно преобразовать в отрезок [0, 1) вещественной оси (рис. 7), любой луч — в положительный луч вещественной оси (рис. 8). б) Рис. 6 растяжение (им) О перенос в) поворот перенос рас гяжение Рис. 7 перенос поворот Рис.8 в) б) В) 4.
Преобразование плоскости z, |
переводящее три различные точки z, zi, z3 в три различныеточт плоскости (рис.9). Рассмотрим пример, показывающий, как пользоваться приведенной ниже табли- цей.
Пример с решением:
Отобразить круг с разрезом по радиусу (рис. 10) взаимно однозначно и конформно на единичный круг с центром в нуле. 4 А. Применяя простейшие преобразования плоскости, приведем заданную область к области, имеющейся в таблице. 1. Переместим центр заданного круга в нулевую точку (см. рис. 11): .
Имеем: круг с разрезом 2. Повернем полученный круг по часовой стрелке на угол (см. рис. 12) . Имеем: круг с разрезом arg 3. Сожмем круг в три раза (см. рис. 13) Имеем: круг с разрезом Таким образом, исходная область приводится к имеющейся в таблице при помощи следующего преобразования Б. 1. Указанная область — круг с разрезом — приведена в таблице под № 30. Функция Жуковского КОНФОРМНЫЕ ОТОБРАЖЕНИЯ преобразует эту область в плоскость с разрезом по отрезку [-1, 5] вещественной оси (рис. 14). 2. Указанная область приведена в таблице под № 22.
Применяя дробно-линейное преобразование преобразуем эту область в плоасость с разрезом по лучу [0, +оо) вещественной оси (рис. 15).
3. Указанная область приведена в таблице под № 6. Извлекая квадратный корень преобразуем эту область в верхнюю полуплоскость Im z6 > 0 (рис. 16). 4. Указанная область приведона в таблице под Ng 11. Применяя дробно- линейное преобразование преобразуем эту область в единичный круге центром в нуле Последовательно выражая z* через z^-i, получим взаимно однозначное и конформное преобразование заданного на комплексной плоскости г круга с разрезом по радиусу на единичный круг комплексной плоек ости tr. р- Конформное отображение заданными областями определяется неоднозначно.
Пример с решением:
Отобразить полукруг (рис.18) взаимно однозначно и конформно на верхнюю полуплоскость Im w > 0. . Дробно-линейное отображение преобразует заданный полукруг в прямой угол 2. Указанная область приведена в таблице под Ne 4 (п = 2). Возводя в квадрат Б. Заданная область приведена в таблице за No 9. Искомое преобразование имеет вид чю- Оба отображения w -заданный полукруг в верхнюю полуплоскость переводит взаимно однозначно и конформно Организация таблицы и правила пользования ею.
Как будет показано в конце параграфа, такая стандартизация удобна для практического использования. Часто приводится только преобразование, сводящее заданную область к ранее рассмотренной. В этом случае дается ссылка на преобразование, переводящее полученную область в стандартную (единичный круг с центром в нуле или верхнюю полуплоскость). Основные элементарные функции.
Таблица Плоскость с разрезом по действительному лучу [О, Плоскость с разрезами Плоскость с разрезом по действительному лучу [0, +ю[ Плоскость с разрезом по отрезку 10, 1] Плоскость с разрезом по действительному лучу (0, +«>( Плоскость с разрезами по действительным лучам J -оо, 0] и (I, +оо[ Плоскость с разрезом по действительному лучу [0, +«>( Плоскость с разрезом по отрезку lu. zi] Плоскость с разрезом по отрезку (О, 1J № 21 1лоскость с разрезами ю лучам, лежащим ia прямой, проходящей через ачало координат по действительным лучам ]-«ю, 0] и (1.
Плоскость с разрезом по действительному лучу (0, +во( Плоскость с разрезом по дуге окружности Ixl — 1, lm z > О Плоскость с разрезом по дуге окруж ности III — I, Re z > О Плоскость с разрезом по действительн ому лучу (0, Плоскость с разрезом no дуге окруж ности Плоскость с разрезом по действительному лучу [С, + со [ № 25 Полуплоскость с разрезами Полуплоскость l с разрезом по отрезку [0, />
Плоскость с разрезом по действительному лучу [ — I, Полуплоскость с разрезом по отрезку Полуплоскость Im г > О с разрезами по отрезку [0, oi) и мнимому лучу №28 Полуплоскость с разрезом по ду| е окружности по действительным лучам |- по действительным лучам 1 — оо, -Л2] с разрезом по мнимому лучу Круг с разрезами Круг 1 с разрезом по отрезку (1/2, 1J №30 Плоскость с разрезом по отрезку <-1, 5/4] Круг Izl с разрезами по отрезкам (-1. -1/2] и (1/2, 1] № 31
Плоскость с разрезами по отрезиам I -5/4, 5/4] Круг Ijl симметричными разрезами по мнимой оси Круг lie с симметричными разрезами по действительной оси Внешность круга с разрезами Внешность единичного круга I с разрезом по отрезку [1, 2J №33 Внешность единичного круга с разрезом по отрезкам 1-2, -1] и 11, 2) №34 Плоскость с разрезом по отрезку [ -1, 5/4] Плоскость с разрезом по отрезку I — 5/4, 3/4] w = e’^z Внешность единичного круга Izl > 1 с разрезами по отрезкам, являющимися продолжениями его диаметра Внешность единичного круга Iwl > 1 с разрезами по отрезкам, лежащим на действительной оси Полуируг с разрезами -г2
Nfc 36 Круг Iwl с разрезом по отрезку [ -1/4, 1] Полукруг , с разрезом по отрезку (0, i/2) Полукруг , с разрезом по отрезку [//2, /) Круг с разрезами по отрезкам № 37 Полукруг с разрезами по отрезкам [0. al) и [Ы. /). где N? 38 Круг с разрезами по отрезкам 1-1. — угол с разрезами Угол с разрезом по действительному лучу Ах» г — т/4 с началом в точке 1 + / Полуплоскость Im W > 0 с разрезом по мнимому лучу с началом в точке 12/, +/•©( Nf39 Плоскость с разрезами по действительным лучам Угол с разрезом по действительному лучу Arg z — т/л с началом в точке Полоса с разрезами w — с*
Полуплоскость Im с разрезом по дуге окружности иг » с Полоса 0 т с разрезом по мнимому отрезку ( Полуплоскость Im с разрезом по дуге окружности w — е Полоса 0 разрезом по мнимому отрезку fW/2, TiJ N? Полоса Полуплоскость Im w > О с разрезами по мнимым с разрезами по дуге отрезкам [0, al и [Ы, «1, окружности w « t*, КОНФОРМНЫЕ ОТОБРАЖЕНИЯ М43 Полоса Плоскость с разрезом по действительному лучу (0. +«( №44 Полоса с разрезом Полуплоскость Im по действительному с разрезом по мнимому лучу I отрезку [О, /I
Полоса 0 Полоса с разрезом по действительному лучу I №46 Полоса Полоса 0 с разрезом по действительному лучу R №47 Область 1 Полоса 01 Область с удаленным кругом Re Полоса Полуплоскость Im z > О с удаленным круговым сегментом Угол №50 -Ш Полуплоскость Im с удаленным круговым сегментом Полуплоскость Im w > 0 № 51 Полуполоса Полуплоскость Im w > Полуплоскость Im Полуполоса с удаленными полукругами № 53
Полуполоса Полуполоса N? 54 Угол Полуплоскость Im w > 0 с удаленным сектором единичного круга Ne 55 Угол Im z с удаленным полукругом Полуполоса 0 Внешность параболы Полуплоскость Im w Внутренность параболы Полуплоскость Im № 58 Внешность гиперболы Полуплоскость Im w Внутренность правой ветви гиперболы Полуплоскость Iro W > О Внешность эллипса Внешность круга М > I
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
Видео:Взаимное расположение окружности и прямой. 7 класс.Скачать
Планиметрия (прямая и окружность)
Планиметрия изучется в начальном курсе геометрии и зачастую сводится к решению практических задач без изучения теоретической базы.
В данной статье приводятся альтернативные (подсказкам) решения задач из первого раздела (кроме 1.5) приложения Euclidea (геометрические построения с помощью циркуля и линейки).
Решения задач 1.1, 1.2 и 1.3 основаны на том, что с помощью циркуля и линейки можно построить равносторонний треугольник.
1.1 Построить угол 60° с заданой стороной
1.2 Построить серединный перпендикуляр к отрезку
На данной ограниченной прямой построить равносторонний треугольник
1.3 Середина отрезка
всё, что можно построить с помощью циркуля и линейки, может быть построено с помощью одного циркуля.
Из точки В радиусом АВ описываем окружность.
По этой окружности откладываем от точки А расстояние АВ три раза: получаем точку С, очевидно, диаметрально противоположную А. Расстояние АС представляет собой двойное рассрастояние АВ. Проведя окружность из С радиусом ВС, мы можем таким же образом найти точку,
диаметрально противоположную В и, следовательно, удаленную от А на
тройное расстояние АВ, и т. д.
любое построение, выполнимое на плоскости циркулем и линейкой, можно выполнить одной линейкой, если нарисована хотя бы одна окружность и отмечен её центр.
Проведем прямые PA и PB и отметим точки D и C их пересечения прямой b. Пусть О — точка пересечения прямых AC и BD. Тогда, согласно предыдущей лемме, прямая PO пересечёт отрезок AB в его середине M.
Решением задачи 1.3 по методу Штейнера-Понеселе будет:
1.4 Окружность, вписанная в квадрат
Из точки A, лежащей вне данной полуокружности, опустить на её диаметр перпендикуляр, обходясь при этом без циркуля. Положение центра полуокружности не указано.
Нам пригодится здесь то свойство треугольника, что все его высоты пересекаются в одной точке. Соединим A с B и C; получим точки D и E. Прямые BE и CD, очевидно, — высоты треугольника ABC. Третья высота — искомый перпендикуляр к BC — должна проходить через пересечение двух других, т.е. через точку M. Проведя по линейке прямую через точки A и M, мы выполним требованиек задачи, не прибегая к услугам циркуля.
И опустив перпендикуляр из точки пересечения диагоналей квадрата на ребро, найдём середину ребра.
Это же построение можно использовать для решения задачи 2.9 Окружность, касающаяся прямой
1.6 Найти центр окружности
Плоский угол, опирающийся на диаметр окружности, — прямой.
Определение: касательной к окружности называется прямая, имеющая с окружностью одну общую точку. Касательная к окружности перпендикулярна радиусу, проведённому в точку касания.
Рассмотрим задачу 2.8
2.8 Касательная к окружности в точке
Возвращаясь к предыдущей задаче, эту задачу можно решить построив угол, опирающийся на диаметр окружности по теореме Фалеса
Далее, построив перпендикуляр к касательной, найдём диаметр окружности, и, разделив его пополам, найдём центр окружности.
Ещё об одном способе построения касательной к окружности можно узнать из лекции 1.5 курса «Геометрия и группы» А. Савватеева ссылка
1.7 Квадрат, вписанный в окружность
Задача Наполеона
Решим задачу методом Мора-Маскерони.
Построим три окружности радиусом r и две окружности радиусом
В приложении нет такой операции, как перенос раствора циркуля (равного MO), поэтому необходимо использовать дополнительные построения.
Для того, чтобы построить касательную к исходной окружности, параллельную МО, необходимо произвести построения, которые были приведены выше (построить три окружности радиусом r и две окружности радиусом ), но вместо исходной окружности взять окружность, обозначенную на рисунке синим цветом
Т.о. мы перенесли раствор циркуля (равный МО) в точку А.
Далее из точки А необходимо провести окружность c радиусом МО
Видео:ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямойСкачать
Дробно-линейные отображения
Дробно-линейной функцией называется функция вида: , где — произвольные комплексные числа, такие, что .
Перечислим без доказательства свойства дробно-линейной функции.
- Дробно-линейная функция осуществляет взаимно однозначное отображение расширенной комплексной плоскости на себя. При этом точка отображается в точку , а точка отображается в .
- Дробно-линейное отображение можно представить в виде суперпозиции трех простейших отображений: целого линейного , отображения и сдвига .
- Дробно-линейное отображение отображает окружности и прямые в окружности и прямые. При этом прямая может перейти как в прямую, так и в окружность. Окружность тоже может перейти как в прямую, так и в окружность. Это свойство называется круговым свойством дробно-линейных отображений.
- Точки симметричные относительно прямой или окружности переходят в точки симметричные относительно образа этой прямой или окружности.
- Дробно-линейное отображение, переводящее три заданные точки в три заданные точки: дается формулой:
Пример 1 Найти образ мнимой оси при отображении .
Мнимая ось представляет собой прямую. По третьему свойству она должна перейти в окружность или в прямую. Найдем образы трех точек мнимой оси: . Так как образ одной из точек , то мнимая ось переходит в прямую проходящую через и , то есть в действительную ось.
Пример 2 Найти дробно линейное отображение, переводящее точки .
Пример 3 Найти образ области при отображении
Найдем образ мнимой оси при данном отображении. Возьмем три точки : .
Отметим также, что . Куда же перешел луч ? Подставим в формулу отображения: . При , точки переходят в точки луча действительной оси. Точки переходят в луч . Образы двух точек действительной оси у нас есть: Действительная ось переходит в окружность, проходящую через точки .
Найдем образ точки из границы нашей области:
Итак, образ луча будет полуокружность .
Теперь мы можем изобразить схему самого отображения:
Пример 4 Найти образы всех квадрантов при отображении .
Чтобы не решать опять задачи подобные примеру 3, воспользуемся следствием принципа симметрии Римана-Шварца в такой формулировке:
Пусть функция отображает область в и — дуга окружности или отрезок, принадлежащий границе области , и — область, симметричная относительно .
Пусть непрерывна на и области и не пересекаются. Тогда функция конформно отображает на , где и — образы и соответственно при отображении .
На следующем рисунке видно, что области и симметричны относительно луча , который переходит в полуокружность . Так находится образ области . Он для удобства обозначен штриховкой. Точно так же находятся образы остальных двух квадрантов.
Длины волн инфракрасного света достаточно велики, чтобы перемещаться сквозь облака, которые в противном случае блокировали бы наш обзор. Используя большие инфракра сные телескопы, астрономы смогли заглянуть в ядро нашей галактики. Большое количество звезд излучают часть своей электромагнитной энергии в виде видимого света, крошечной части спектра, к которой чувствительны наши глаза.
Так как длина волны коррелирует с энергией, цвет звезды говорит нам, насколько она горячая. Используя телескопы, чувствительные к различным диапазонам длин волн спектра, астрономы получают представление о широком круге объектов и явлений во вселенной.
Пример №1 Постройте центральную симметрию тетраэдра, относительно точки O, изображенных на рисунке 3.
Для построения такой центральной симметрии сначала проведем через все точки тетраэдра прямые, каждая из которых будет проходить через точку O. На них построим отрезки, удовлетворяющие условиям |AO|=|A?O|, |BO|=|B?O|, |CO|=|C?O|, |DO|=|D?O| Таким образом, и получим искомую симметрию (рис. 4).
В ряду разных механических движений особенным значением обладают колебания. Это движения и процессы, имеющие периодичность во времени.
В среде электромагнитных явлений также значительное место заняли электромагнитные колебания. В этих колебаниях заряды, токи, электрические и магнитные поля изменяются согласно периодическим законам.
Совет №1 Велосипедист, имеющий скорость 300 м/с, или идеальный газ, оказывающий давление 100 паскалей в большой тепловой машине — это странно.
Нужна помощь с курсовой или дипломной работой?
📹 Видео
Уравнение окружности (1)Скачать
9 класс, 7 урок, Уравнение прямойСкачать
9 класс, 6 урок, Уравнение окружностиСкачать
Найти центр кругаСкачать
10 класс, 11 урок, Числовая окружностьСкачать
Окружность. 7 класс.Скачать
Как искать точки на тригонометрической окружности.Скачать
Длина окружности. Математика 6 класс.Скачать
Самый короткий тест на интеллект Задача Массачусетского профессораСкачать
Тригонометрия с нуля до ЕГЭ за 6 часов | Математика ЕГЭ 10 класс | УмскулСкачать
Геометрия 9 класс (Урок№9 - Уравнение линии на плоскости. Уравнение окружности. Уравнение прямой.)Скачать
Всё про углы в окружности. Геометрия | МатематикаСкачать
Конформные отображенияСкачать
Тригонометрическая окружность. Как выучить?Скачать
Длина окружности. Площадь круга. 6 класс.Скачать
Две окружности | Резерв досрока ЕГЭ-2019. Задание 16. Профильный уровень | Борис Трушин |Скачать
Как видеть тангенс? Тангенс угла с помощью единичного круга.Скачать
#207. Окружность девяти точек | лемма о трезубце | ортотреугольник | прямая ЭйлераСкачать