Как относятся углы в треугольнике

Треугольники
Содержание
  1. Определение
  2. Виды углов в треугольнике:
  3. Виды треугольников:
  4. Признаки равенства треугольников
  5. Как относятся углы в треугольнике
  6. Треугольник. Формулы и свойства треугольников.
  7. Типы треугольников
  8. По величине углов
  9. По числу равных сторон
  10. Вершины углы и стороны треугольника
  11. Свойства углов и сторон треугольника
  12. Теорема синусов
  13. Теорема косинусов
  14. Теорема о проекциях
  15. Формулы для вычисления длин сторон треугольника
  16. Медианы треугольника
  17. Свойства медиан треугольника:
  18. Формулы медиан треугольника
  19. Биссектрисы треугольника
  20. Свойства биссектрис треугольника:
  21. Формулы биссектрис треугольника
  22. Высоты треугольника
  23. Свойства высот треугольника
  24. Формулы высот треугольника
  25. Окружность вписанная в треугольник
  26. Свойства окружности вписанной в треугольник
  27. Формулы радиуса окружности вписанной в треугольник
  28. Окружность описанная вокруг треугольника
  29. Свойства окружности описанной вокруг треугольника
  30. Формулы радиуса окружности описанной вокруг треугольника
  31. Связь между вписанной и описанной окружностями треугольника
  32. Средняя линия треугольника
  33. Свойства средней линии треугольника
  34. Периметр треугольника
  35. Формулы площади треугольника
  36. Формула Герона
  37. Равенство треугольников
  38. Признаки равенства треугольников
  39. Первый признак равенства треугольников — по двум сторонам и углу между ними
  40. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  41. Третий признак равенства треугольников — по трем сторонам
  42. Подобие треугольников
  43. Признаки подобия треугольников
  44. Первый признак подобия треугольников
  45. Второй признак подобия треугольников
  46. Третий признак подобия треугольников
  47. 📸 Видео

Видео:7 класс, 31 урок, Теорема о сумме углов треугольникаСкачать

7 класс, 31 урок, Теорема о сумме углов треугольника

Определение

Треугольник — это геометрическая фигура, которая состоит из
трех точек, не лежащих на одной прямой и трех отрезков,
соединяющих эти точки.

Точки называются вершинами треугольника.
Отрезки называются сторонами треугольника.

  • три угла
  • три вершины
  • три стороны

Видео:Отношение площадей треугольников с равным угломСкачать

Отношение площадей треугольников с равным углом

Виды углов в треугольнике:

Чтобы лучше понять какие бывают треугольники узнаем
какие бывают углы в треугольниках.

  • Острый угол
    Это любой угол меньше 90°.

Как относятся углы в треугольнике

  • Тупой угол
    Это любой угол больше 90°, но меньше 180°.

Как относятся углы в треугольнике

  • Прямой угол
    Это угол 90°.

Как относятся углы в треугольнике

  • Развернутый угол
    Это угол 180°.

Как относятся углы в треугольнике

Видео:В треугольнике ABC углы А,В и С относятся как 1 :1:7 .Найти углы треугольника ABC.7 кл.ОгэСкачать

В треугольнике ABC углы А,В и С относятся как 1 :1:7 .Найти углы треугольника ABC.7 кл.Огэ

Виды треугольников:

  • Острый треугольник
    Это треугольник в котором все углы острые.

Как относятся углы в треугольнике

  • Тупоугольный треугольник
    Это треугольник в котором один из углов тупой.

Как относятся углы в треугольнике

  • Прямоугольный треугольник
    Это треугольник в котором один из углов прямой.

Как относятся углы в треугольнике

  • Равнобедренный треугольник
    Это треугольник в котором две боковые стороны равны.
    Как относятся углы в треугольнике
  • Равносторонний треугольник
    Это треугольник в котором все стороны равны.
    Как относятся углы в треугольнике

Видео:Площади треугольников с равным углом.Скачать

Площади треугольников с равным углом.

Признаки равенства треугольников

С помощью признаков равенства треугольников можно
доказать что те или иные треугольники равны между собой.

Видео:Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать

Сумма углов треугольника. Геометрия 7 класс | Математика

Как относятся углы в треугольнике

Углы треугольника относятся как Как относятся углы в треугольникеНайдите меньший из них. Ответ дайте в градусах.

Это задание ещё не решено, приводим решение прототипа.

Углы треугольника относятся как 2 : 3 : 4. Найдите меньший из них. Ответ дайте в градусах.

Пусть углы треугольника равны 2x, 3x и 4x. Их сумма равна 180°, то есть 9x = 180°, откуда x = 20. Значит, меньший угол равен 2x = 2 · 20° = 40°.

Видео:Высоты в треугольнике создают подобные треугольники. Какие углы равны? Как относятся стороны?Скачать

Высоты в треугольнике создают подобные треугольники. Какие углы равны? Как относятся стороны?

Треугольник. Формулы и свойства треугольников.

Видео:Соотношения между сторонами и углами треугольника. 7 класс.Скачать

Соотношения между сторонами и углами треугольника. 7 класс.

Типы треугольников

По величине углов

Как относятся углы в треугольнике

Как относятся углы в треугольнике

Как относятся углы в треугольнике

По числу равных сторон

Как относятся углы в треугольнике

Как относятся углы в треугольнике

Как относятся углы в треугольнике

Видео:8 класс, 21 урок, Отношение площадей подобных треугольниковСкачать

8 класс, 21 урок, Отношение площадей подобных треугольников

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Как относятся углы в треугольнике

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c= 2R
sin αsin βsin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Видео:№224. Найдите углы треугольника ABC, если ∠A:∠B:∠C= 2:3:4.Скачать

№224. Найдите углы треугольника ABC, если ∠A:∠B:∠C= 2:3:4.

Медианы треугольника

Как относятся углы в треугольнике

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Видео:Отношение площадей треугольниковСкачать

Отношение площадей треугольников

Биссектрисы треугольника

Как относятся углы в треугольнике

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Видео:Задача про соотношение сторон. Геометрия 7 класс.Скачать

Задача про соотношение сторон. Геометрия 7 класс.

Высоты треугольника

Как относятся углы в треугольнике

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Видео:Внешний угол треугольникаСкачать

Внешний угол треугольника

Окружность вписанная в треугольник

Как относятся углы в треугольнике

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Окружность описанная вокруг треугольника

Как относятся углы в треугольнике

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Видео:Углы треугольника относятся как 2:3:4Скачать

Углы треугольника относятся как 2:3:4

Связь между вписанной и описанной окружностями треугольника

Видео:Три угла треугольника относятся как 2:11:23. Найдите тупой угол треугольника. Ответ дайте в градусахСкачать

Три угла треугольника относятся как 2:11:23. Найдите тупой угол треугольника. Ответ дайте в градусах

Средняя линия треугольника

Свойства средней линии треугольника

Как относятся углы в треугольнике

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Видео:№228. Найдите углы равнобедренного треугольника, если один из его углов равен: а) 40°Скачать

№228. Найдите углы равнобедренного треугольника, если один из его углов равен: а) 40°

Периметр треугольника

Как относятся углы в треугольнике

Периметр треугольника ∆ ABC равен сумме длин его сторон

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Формулы площади треугольника

Как относятся углы в треугольнике

Формула Герона

S =a · b · с
4R

Видео:Только 1 может решить эту хитрую задачу ★ Найдите углы треугольника ★ Супер ЖЕСТЬСкачать

Только 1 может решить эту хитрую задачу ★ Найдите углы треугольника ★ Супер ЖЕСТЬ

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Видео:Геометрия 7 класс (Урок№24 - Соотношения между сторонами и углами треугольника. Неравенство треуг.)Скачать

Геометрия 7 класс (Урок№24 - Соотношения между сторонами и углами треугольника. Неравенство треуг.)

Подобие треугольников

Как относятся углы в треугольнике

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

📸 Видео

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.
Поделиться или сохранить к себе: