Как определить число зубьев по диаметру окружности

Расчет числа зубьев зубчатого колеса

Зубчатое колесо — это основная деталь зубчатой передачи в виде диска с зубьями на цилиндрической или конической поверхности, входящими в зацепление с зубьями другого зубчатого колеса.

Формула расчета числа зубьев зубчатого колеса:

z — количество зубьев зубчатого колеса в мм;
d — диаметр делительной окружности в мм;
m — модуль зубчатого колеса.

Быстро выполнить эту математическую операцию можно с помощью нашей онлайн программы. Для этого необходимо в соответствующее поле ввести исходное значение и нажать кнопку.

На этой странице представлен самый простой онлайн калькулятор расчета числа зубьев зубчатого колеса по простой математической формуле в зависимости от диаметра делительной окружности и числа зубьев. С помощью этого калькулятора вы в один клик сможете выполнить расчет числа зубьев зубчатого колеса.

Содержание
  1. Глава 8. зацепления зубчатые
  2. Зацепления зубчатые относятся к передачам (подвиж­ным соединениям) и передают движение от двигателя к ис­полнитель­ным механизмам. К составным частям зубчатых передач отно­сятся зубчатые колеса (цилиндрические, кони­ческие), червяки, рейки.
  3. Как найти модуль зубчатого колеса?
  4. История
  5. Модуль зубьев зубчатого колеса
  6. Что такое модуль зубчатого колеса
  7. Чему равен модуль зубчатого колеса?
  8. Для чего нужен модуль зубчатого колеса?
  9. Как определить параметры шестерни?
  10. Как найти модуль шестерни?
  11. Как найти делительный диаметр шестерни?
  12. Как найти модуль зуба?
  13. Какие бывают модули зубчатых колес?
  14. Цилиндрические зубчатые колёса
  15. Продольная линия зуба
  16. Прямозубые колёса
  17. Косозубые колёса
  18. Шевронные колеса
  19. Колёса с круговыми зубьями
  20. Винтовые шестерни
  21. Секторные колёса
  22. Зубчатые колёса с внешним и внутренним зацеплением
  23. Звездочка
  24. Реечная передача (кремальера)
  25. Коронные колёса
  26. Конические зубчатые колёса
  27. Зубчатые передачи
  28. Типы зубчатых передач
  29. Эвольвентное зацепление
  30. Форма зубьев
  31. Коррегирование зубчатого зацепления
  32. Зубчатые передачи с точно заданным межосевым расстоянием
  33. Зубчатые передачи с изменяемым межосевым расстоянием
  34. Расчетные формулы для зубчатых передач
  35. Основные параметры зубчатых цилиндрических передач
  36. Межосевые расстояния
  37. Межосевые расстояния для двухступенчатых несоосных редукторов общего назначения
  38. Коэффициент запаса прочности при работе зуба двумя сторонами
  39. Межосевые расстояния для трехступенчатых несоосных редукторов общего назначения
  40. Номинальные передаточные числа
  41. Почему шестерни часто выполняют заодно с валом?

Видео:Модуль шестерни и параметры зубчатого колесаСкачать

Модуль шестерни и параметры зубчатого колеса

Глава 8. зацепления зубчатые

Как определить число зубьев по диаметру окружности

Видео:Что такое МОДУЛЬ шестерни? Ты ТОЧНО поймешь!Скачать

Что такое МОДУЛЬ шестерни? Ты ТОЧНО поймешь!

Как определить число зубьев по диаметру окружностиЗацепления зубчатые относятся к передачам (подвиж­ным соединениям) и передают движение от двигателя к ис­полнитель­ным механизмам. К составным частям зубчатых передач отно­сятся зубчатые колеса (цилиндрические, кони­ческие), червяки, рейки.

Как определить число зубьев по диаметру окружности

Как определить число зубьев по диаметру окружностиДиаметр делительной ок­ружности d является од­ним из основных параметров, по кото­рому произ­водят расчет зубча­того ко­леса:

где z – число зубьев;

Модуль зацепления m – это часть диаметра делительной ок­ружности, приходящейся на один зуб:

где t – шаг зацепления.

где h a – высота головки зуба, h a = m ; h f – высота ножки зуба, h f = 1,25 m .

Диаметр окружности выступов зубьев :

Диаметр окружности впадин :

Как определить число зубьев по диаметру окружности

Служит для передачи вращения при параллельных осях валов.

Как определить число зубьев по диаметру окружности Как определить число зубьев по диаметру окружности

ГОСТ 9563-60 предусматривает два ряда модулей m = 0,05…100 мм.

Ряд 1: … 0,5; 0,6; 0,8; 1; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16 …

Ряд 2: … 0,55; 0,7; 0,9; 1,125; 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 7; 9; 11; 14 …

Примечание. Ряд 1 следует предпочитать ряду 2 .

Как определить число зубьев по диаметру окружности

Служит для преобразования вращательного движения в возвратно-посту­пательное.

Как определить число зубьев по диаметру окружности Как определить число зубьев по диаметру окружности

ГОСТ 9563-60 предусматривает два ряда модулей m = 0,05…100 мм.

Ряд 1: … 0,5; 0,6; 0,8; 1; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16 …

Ряд 2: … 0,55; 0,7; 0,9; 1,125; 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 7; 9; 11; 14 …

Примечание. Ряд 1 следует предпочитать ряду 2.

Как определить число зубьев по диаметру окружности

Служит для передачи вращательного движения между валами со скрещивающимися осями.

Как определить число зубьев по диаметру окружности Как определить число зубьев по диаметру окружности

ГОСТ 19672-74 устанавливает два ряда значений модулей m (мм).

Ряд 1: … 1; 1,25; 1,6; 2; 2,5; 3,15; 4; 5; 6,3; 8; 10 …

Ряд 2: … 1,5; 3; 3,5; 6; 7 …

Примечание. Ряд 1 следует предпочитать ряду 2.

Как определить число зубьев по диаметру окружности

Служит для передачи вращения при пересекающихся осях валов.

Как определить число зубьев по диаметру окружности Как определить число зубьев по диаметру окружности

ГОСТ 9563-60 предусматривает два ряда модулей m  = 0,05…100 мм.

Ряд 1: … 0,5; 0,6; 0,8; 1; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16 …

Ряд 2: … 0,55; 0,7; 0,9; 1,125; 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 7; 9; 11; 14 …

Примечание. Ряд 1 следует предпочитать ряду 2.

Видео:Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Как найти модуль зубчатого колеса?

Видео:4 5 расчет зубчатого колесаСкачать

4 5 расчет зубчатого колеса

История

Сама по себе идея механической передачи восходит к идее колеса. Применяя систему из двух колёс разного диаметра, можно не только передавать, но и преобразовывать движение. Если ведомым будет большее колесо, то на выходе мы потеряем в скорости, но зато крутящий момент этой передачи увеличится. Эта передача удобна там, где требуется «усилить движение», например, при подъеме тяжестей. Но сцепление между передаточными колесами с гладким ободом недостаточно жесткое, колёса проскальзывают. Поэтому вместо гладких колес начали использовать зубчатые.

В Древнем Египте для орошения земель уже использовались приводимые в действие быками устройства, состоявшие из деревянной зубчатой передачи и колеса с большим числом ковшей.

Вместо зубьев первоначально использовали деревянные цилиндрические или прямоугольные пальцы, которые устанавливали по краю деревянных ободьев.

Изготовленный в I веке до н.э. Антикитерский механизм состоял из десятков металлических зубчатых колес [4] .

Видео:6.3 Зубчатые цилиндрические передачиСкачать

6.3 Зубчатые цилиндрические передачи

Модуль зубьев зубчатого колеса

Зубчатая передача впервые была освоена человеком в глубокой древности. Имя изобретателя осталось скрыто во тьме веков. Первоначально зубчатые передачи имели по шесть зубьев — отсюда и пошло название «шестерня». За многие тысячелетия технического прогресса передача многократно усовершенствовалась, и сегодня они применяются практически в любом транспортном средстве от велосипеда до космического корабля и подводной лодки. Используются они также в любом станке и механизме, больше всего шестеренок используется в механических часах.

Как определить число зубьев по диаметру окружности

Видео:Как определить шестернюСкачать

Как определить шестерню

Что такое модуль зубчатого колеса

Современные шестерни далеко ушли от своих деревянных шестизубых предков, изготавливаемых механиками с помощью воображения и мерной веревочки. Конструкция передач намного усложнилась, тысячекратно возросли скорость вращения и усилия, передаваемые через такие передачи. В связи с этим усложнились и методы их конструирования. Каждую шестеренку характеризует несколько основных параметров

  • диаметр;
  • число зубьев;
  • шаг;
  • высота зубца;
  • и некоторые другие.

Одним из самых универсальных характеристик является модуль зубчатого колеса. Существует для подвида — основной и торцевой.

В большинстве расчетов используется основной. Он рассчитывается применительно к делительной окружности и служит одним из важнейших параметров.

Для расчета этого параметра применяют следующие формулы:

Как определить число зубьев по диаметру окружности

Параметры зубчатых колес

Модуль зубчатого колеса можно рассчитать и следующим образом:

где h — высота зубца.

где De — диаметр окружности выступов,а z — число зубьев.

Видео:КАК НАЙТИ ДИАМЕТР ОКРУЖНОСТИ, ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 классСкачать

КАК НАЙТИ ДИАМЕТР ОКРУЖНОСТИ, ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 класс

Чему равен модуль зубчатого колеса?

Модуль зубчатого колеса Модуль зубчатого колеса, геометрический параметр зубчатых колёс. Для прямозубых цилиндрических зубчатых колёс модуль m равен отношению диаметра делительной окружности dд к числу зубьев z или отношению шага t по делительной окружности к числу: m = dд/z = ts/p.

Видео:№1110. Расстояние между серединами зубьев зубчатого колеса, измеренное по дуге окружности, равноСкачать

№1110. Расстояние между серединами зубьев зубчатого колеса, измеренное по дуге окружности, равно

Для чего нужен модуль зубчатого колеса?

Что же такое модуль шестерни? это универсальная характеристика зубчатого колеса, связывающая воедино такие его важнейшие параметры, как шаг, высота зуба, число зубов и диаметр окружности выступов. Эта характеристика участвует во всех расчетах, связанных с конструированием систем передач.

Видео:Лекция 5. Червячные передачиСкачать

Лекция 5. Червячные передачи

Как определить параметры шестерни?

Чтобы определить параметры прямозубой шестеренки, потребуется выполнить некоторые предварительные вычисления. Длина начальной окружности равна π×D, где D — ее диаметр. Если разделить шаг на число пи, мы получим коэффициент, постоянный для данной детали зубчатой передачи. Он и называется модулем зацепления m.

Видео:Деление окружностиСкачать

Деление окружности

Как найти модуль шестерни?

Как определить модуль косозубой шестерни.

  1. Диаметр окружности выступов (De) равен 28,6 мм.
  2. Считаем количество зубьев. Z=25.
  3. Делительный диаметр (De) делим на количество зубьев 25 +2. Равно 28,6 разделить на 27=1,05925925925926.
  4. Округляем до ближнего модуля. Получается модуль 1.

Видео:Кратко о передаточном числе в зубчатой передаче.Скачать

Кратко о передаточном числе в зубчатой передаче.

Как найти делительный диаметр шестерни?

Диаметр делительной окружности d является одним из основных параметров, по которому производят расчет зубчатого колеса: d = m × z, где z – число зубьев; m – модуль.

Видео:Деление окружности на 3; 6; 12 равных частейСкачать

Деление окружности на 3; 6; 12 равных частей

Как найти модуль зуба?

Модуль = De/Z+2. То есть диаметр окружности выступов разделить на количество зубьев плюс 2. Измеряем диаметр: Диаметр окружности выступов (De) равен 28,6 мм.

Видео:Зубонарезание для чайников за 6 минут. Часть I - теорияСкачать

Зубонарезание для чайников за 6 минут. Часть I - теория

Какие бывают модули зубчатых колес?

Модуль — это линейная величина, в π раз меньшая шага зубьев p (окружного pt, осевого рx, нормального рn и других шагов) эвольвентного зубчатого колеса m = р/π. Соответственно различают модули: окружной mt, осевой mx, нормальный mn и др.

Видео:Видеопрактика 3.2.1 Расчет цепных передач (упрощенно)Скачать

Видеопрактика 3.2.1 Расчет цепных передач (упрощенно)

Цилиндрические зубчатые колёса

Профиль зубьев колёс как правило имеет эвольвентную боковую форму. Однако существуют передачи с круговой формой профиля зубьев (передача Новикова с одной и двумя линиями зацепления) и с циклоидальной. Кроме того, в храповых механизмах применяются зубчатые колёса с несимметричным профилем зуба.

Параметры эвольвентного зубчатого колеса:

  • m — модуль колеса. Модулем зацепления называется линейная величина в π раз меньшая окружного шага P или отношение шага по любой концентрической окружности зубчатого колеса к π, то есть модуль — число миллиметров диаметра делительной окружности приходящееся на один зуб. Тёмное и светлое колёсо имеют одинаковый модуль. Самый главный параметр, стандартизирован, определяется из прочностного расчёта зубчатых передач. Чем больше нагружена передача, тем выше значение модуля. Через него выражаются все остальные параметры. Модуль измеряется в миллиметрах, вычисляется по формуле:

Как определить число зубьев по диаметру окружности

    • z — число зубьев колеса
    • p — шаг зубьев (отмечен сиреневым цветом)
    • d — диаметр делительной окружности (отмечена жёлтым цветом)
    • da — диаметр окружности вершин тёмного колеса (отмечена красным цветом)
    • db — диаметр основной окружности — эвольвенты (отмечена зелёным цветом)
    • df — диаметр окружности впадин тёмного колеса (отмечена синим цветом)
    • haP+hfP — высота зуба тёмного колеса, x+haP+hfP — высота зуба светлого колеса

    Для целей стандартизации, удобства изготовления и замены зубчатых колёс в машиностроении приняты определённые значения модуля зубчатого колеса m, представляющие собой ряд из чисел на выбор: 0,05; 0,06; 0,08; 0,1; 0,12; 0,15; 0,2; 0,25; 0,3; 0,4; 0,5; 0,6; 0,8; 1; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16; 25; 32; 40; 50; 60; 80; 100.

    Зубчатые колеса могут быть изготовлены с различным смещением режущей рейки: без смещения (нулевое зубчатое колесо или «с нулевыми зубцами»), с положительным смещением (смещение в сторону увеличения материала), с отрицательным смещением (смещение в сторону уменьшения материала).

    Высота головки зуба — haP и высота ножки зуба — hfP — в случае нулевого зубчатого колеса соотносятся с модулем m следующим образом: haP = m; hfP = 1,25 m, то есть:

    Как определить число зубьев по диаметру окружности

    Отсюда получаем, что высота зуба h (на рисунке не обозначена):

    Как определить число зубьев по диаметру окружности

    Вообще из рисунка ясно, что диаметр окружности вершин da больше диаметра окружности впадин df на двойную высоту зуба h. Исходя из всего этого, если требуется практически определить модуль m зубчатого колеса, не имея нужных данных для вычислений (кроме числа зубьев z), то необходимо точно измерить его наружный диаметр da и результат разделить на число зубьев z плюс 2:

    Как определить число зубьев по диаметру окружности

Продольная линия зуба

Цилиндрические зубчатые колеса классифицируются в зависимости от формы продольной линии зуба на:

Как определить число зубьев по диаметру окружности
ПРЯМОЗУБЫЕ
Как определить число зубьев по диаметру окружности
КОСОЗУБЫЕ
Как определить число зубьев по диаметру окружности
ШЕВРОННЫЕ
Как определить число зубьев по диаметру окружности
ЗУБЬЯ НОВИКОВА

Прямозубые колёса

Зубья расположены в радиальных плоскостях, а линия контакта зубьев обеих шестерён параллельна оси вращения. При этом оси обеих шестерён также должны располагаться строго параллельно. Прямозубые колеса имеют наименьшую стоимость, их работа имеет наивысший КПД, но, в то же время, предельный передаваемый крутящий момент таких колес ниже, чем косозубых и шевронных.

Косозубые колёса

Зубья располагаются под углом к оси вращения, а по форме образуют часть винтовой линии. Зацепление таких колёс происходит плавнее, чем у прямозубых, и с меньшим шумом. Также увеличена площадь контакта, что при тех же размерах с прямозубыми позволяет передавать больший крутящий момент. При работе косозубой пары зацепления возникает механическая осевая сила, направленная вдоль оси вращения каждого колеса и стремящаяся раздвинуть оба колеса в противоположные стороны от плоскости контакта, что обязательно требует применения упорных подшипников. Увеличенная площадь трения зубьев косозубого зацепления вызывает дополнительные потери мощности на нагрев. В целом, косозубые колёса применяются в механизмах, требующих передачи большого крутящего момента на высоких скоростях, либо имеющих жёсткие ограничения по шумности.

Шевронные колеса

Изобретение шевронного профиля зуба часто приписывают Андре Ситроену, однако на самом деле он лишь выкупил патент на более совершенную схему, которую придумал польский механик-самоучка [6] . Зубья таких колёс изготавливаются в виде буквы «V» (либо они получаются стыковкой двух косозубых колёс со встречным расположением зубьев). Шевронные колёса решают проблему осевой силы. Осевые силы обеих половин такого колеса взаимно компенсируются, поэтому отпадает необходимость в установке валов на упорные подшипники. При этом передача является самоустанавливающейся в осевом направлении, по причине чего в редукторах с шевронными колесами один из валов устанавливают на плавающих опорах (как правило — на подшипниках с короткими цилиндрическими роликами).

Колёса с круговыми зубьями

Передача на основе колёс с круговыми зубьями (Передача Новикова) имеет ещё более высокие ходовые качества, чем косозубые — высокую нагрузочную способность зацепления, высокую плавность и бесшумность работы. Однако они ограничены в применении сниженными, при тех же условиях, КПД и ресурсом работы, такие колёса заметно сложнее в производстве. Линия зубьев у них представляет собой окружность радиуса, подбираемого под определённые требования. Контакт поверхностей зубьев происходит в одной точке на линии зацепления, расположенной параллельно осям колёс.

Винтовые шестерни

Шестерни имеют форму цилиндра с расположенными на нем зубьями по винтовой линии. Эти шестеренки используются на непересекающихся валах, которые располагаются перпендикулярно друг друга, угол между ними 90°.

Секторные колёса

Секторное колесо представляет собой часть обычного цилиндрического колеса с зубьями любого типа. Такие колёса применяются в тех случаях, когда не требуется вращение звена на полный оборот, и поэтому можно сэкономить на его габаритах.

Зубчатые колёса с внешним и внутренним зацеплением

Как определить число зубьев по диаметру окружности
Пара зубчатых колёс с ВНЕШНИМ зацеплением.
Передаточное число — 3 (42/14).
Вращение колёс происходит противонаправлено.
Как определить число зубьев по диаметру окружности
Пара зубчатых колёс с ВНУТРЕННИМ зацеплением.
Передаточное число — 3 (42/14).
Вращение колёс происходит сонаправленно.

Видео:Математика 5 класс (Урок№26 - Окружность и круг. Сфера и шар.)Скачать

Математика 5 класс (Урок№26 - Окружность и круг. Сфера и шар.)

Звездочка

Шестерня-звезда – это основная деталь цепной передачи, которая используется совместно с гибким элементом – цепью для передачи механической энергии.

Видео:Длина общей нормали. Измерение и программа для расчетаСкачать

Длина общей нормали. Измерение и программа для расчета

Реечная передача (кремальера)

Зубчатая рейка представляет собой часть колеса с бесконечным радиусом делительной окружности. Поэтому делительная окружность, а также окружности вершин и впадин превращаются в параллельные прямые линии. Эвольвентный профиль рейки также принимает прямолинейное очертание. Такое свойство эвольвенты оказалось наиболее ценным при изготовлении зубчатых колёс.

Также реечная передача применяется в зубчатой железной дороге.

Как определить число зубьев по диаметру окружностиЦевочная передача Как определить число зубьев по диаметру окружностиКоронная шестерня

Видео:Расчёт зубчатои передачи. Как расчитать зубчатую передачу.Скачать

Расчёт зубчатои передачи. Как расчитать зубчатую передачу.

Коронные колёса

Коронное колесо — особый вид колёс, зубья которых располагаются на боковой поверхности. Такое колесо, как правило, стыкуется с обычным прямозубым, либо с барабаном из стержней (цевочное колесо), как в башенных часах. Передачи с цевочным колесом — одни из самых ранних и просты в изготовлении, но характеризуются очень большими потерями на трение.

Видео:Шестеренки. Расчет и изготовление в домашней мастерской.Скачать

Шестеренки. Расчет и изготовление в домашней мастерской.

Конические зубчатые колёса

Во многих машинах осуществление требуемых движений механизма связано с необходимостью передать вращение с одного вала на другой при условии, что оси этих валов пересекаются. В таких случаях применяют коническую зубчатую передачу. Различают виды конических колёс, отличающихся по форме линий зубьев: с прямыми, тангенциальными, круговыми и криволинейными зубьями. Конические колёса с круговым зубом, например, применяются в автомобильных главных передачах коробки передач.

Видео:шестерни для Philips определение коррекции, модуля и основные понятияСкачать

шестерни для Philips определение коррекции, модуля и основные понятия

Зубчатые передачи

Как определить число зубьев по диаметру окружности
Зубчатые передачи — это механизм или часть механизма механической передачи, в состав которого входят зубчатые колёса. Зубчатые передачи служат для того, чтобы непрерывно передавать силу и крутящий момент двух валов, расположение которых определяет тип имеющейся зубчатой передачи. Вот о том, что представляют зубчатые передачи, мы и поговорим в этой статье.

Типы зубчатых передач

Как определить число зубьев по диаметру окружности

Эвольвентное зацепление

Как определить число зубьев по диаметру окружности

Все прямозубые цилиндрические передачи с одинаковым модулем зацепления могут из­готавливаться на одном оборудовании, не­зависимо от количества зубьев и размеров головки.

Модули зацепления цилиндрических и ко­нических зубчатых колес стандартизированы по DIN 780; модули зацепления червячных пе­редач по DIN 780; модули шлицевых соедине­ний по DIN 5480; модули зубчатого зацепле­ния нормального профиля для шестерен со спиральными зубьями по DIN 780.

Как определить число зубьев по диаметру окружности Как определить число зубьев по диаметру окружности

Форма зубьев

Как определить число зубьев по диаметру окружности
Для прямозубых цилиндрических передач форма зубьев определяется DIN 867, DIN 58400; конических передач — DIN 3971; чер­вячных передач — DIN 3975; шлицевых соеди­нений — DIN 5480 (см. рис. «Прямые и косые зубья (наружное зацепление)» ).

Форма зубьев гипоидных передач регла­ментируется стандартом DIN 867. В допол­нение к стандартным углам зацепления (20° для зубчатых передач и 30° для шлицевых соединений) применяются также и углы заце­пления 12°, 14°30 15°, 17°30′| 22°30′ и 25°.

Коррегирование зубчатого зацепления

Как определить число зубьев по диаметру окружности
Коррегирование зубчатого зацепления (из­менение высоты головки зуба (см. рис. «Коррегирование зубчатого зацепления прямозубой цилиндрической передачи (циклоидное зацепление)» ) применяется для предотвращения подреза­ния у шестерен с малым количеством зубьев. Оно позволяет увеличить прочность ножки зуба и точно обеспечить межосевое расстояние.

Зубчатые передачи с точно заданным межосевым расстоянием

У зубчатых пар с точно заданным межосевым расстоянием изменение высоты головки зуба для шестерни и зубчатого колеса произво­дится на одинаковую величину, но в противо­положных направлениях, что позволяет сохранить межосевое расстояние неизменным. Такое решение применяется в гипоидных и косозубых передачах.

Зубчатые передачи с изменяемым межосевым расстоянием

Изменение высоты головки зуба для ше­стерни и зубчатого колеса производится независимо друг от друга, поэтому межосе­вое расстояние передачи может изменяться. Допускаемые отклонения линейных разме­ров зубчатых передач регламентированы. Для прямозубых цилиндрических передач — DIN 3960, DIN 58405; для конических передач — DIN 3971; червячных передач — DIN 3975.

Подставляя jη = 0 в приведенные ниже формулы, рассчитывают параметры за­цепления без зазора между зубьями. Для определения зазора между зубьями допу­скаемые отклонения толщины зубьев и зоны их зацепления принимают в соответствии со стандартами DIN 3967 и DIN 58405 в за­висимости от требуемой степени точности зубчатой передачи.

Следует отметить, что не обязательно стремиться к нулевому за­зору между зубьями. Для компенсации имею­щихся отклонений размеров зубьев и сборки шестерен достаточно иметь минимальный зазор, который, кроме того, предотвращает возможность заклинивания зубчатых колес.

Допускаемые отклонения других расчетных параметров (зазор между ножками двух смежных зубьев, межцентровое расстояние) приведены в стандартах DIN 3963, DIN 58405, DIN 3962 Т2, DIN 3967, DIN 3964.

Расчетные формулы для зубчатых передач

Как определить число зубьев по диаметру окружности

Видео:Передаточное число шестерен. Паразитные шестерниСкачать

Передаточное число шестерен. Паразитные шестерни

Основные параметры зубчатых цилиндрических передач

Стандарт распространяется на цилиндрические передачи внешнего зацепления для редукторов и ускорителей, в том числе и комбинированных (коническо-цилиндрических, цилиндро-червячных и др.), выполняемых в виде самостоятельных агрегатов. Стандарт не распространяется на передачи редукторов специального назначения и специальной конструкции Для встроенных передач стандарт является рекомендуемым

Межосевые расстояния

1 ряд40506380100125160200250315400
2 ряд140180225280355
1 ряд50063080010001250160020002500
2 ряд4505607109001120140018002240

1-й ряд следует предпочитать 2-му

Межосевые расстояния для двухступенчатых несоосных редукторов общего назначения

Быстроходная ступень40506380100125140160180200225250280315
Тихоходная ступень6380100125160200225250280315355400450500
Быстроходная ступень35540045050056063071080090010001120125014001600
Тихоходная ступень560630710800900100011201250140016001800200022402500

Коэффициент запаса прочности при работе зуба двумя сторонами

Например: зубья реверсивных передач или зубья сателлитов в планетарных передачах

Материал колес и термо- обработкаОтливки стальные и чугунные без термо- обработкиОтливки стальные и чугунные с термо- обработкойПоковки стальные нормали- зованные или улучшенныеПоковки и отливки стальные с поверх- ностной закалкой (сердцевина вязкая)Стальные, нормали- зованные или улучшенные, а также с поверх- ностной закалкойСтальные с объемной закалкойСтальные, подверг- нутые цементации, азоти- рованию, циани- рованию и др.Чугунные и пласт- массовые колеса
Коэфф.1,91,71,52,21,4 — 1,61,81,21 — 1,2

Межосевые расстояния для трехступенчатых несоосных редукторов общего назначения

Быстроходная ступень40506380100125140160180200
Промежуточная ступень6380100125160200225250280315
Тихоходная ступень100125160200250315355400450500
Быстроходная ступень225250280315355400450500560630
Промежуточная ступень3554004505005606307108009001000
Тихоходная ступень56063071080090010001120125014001600

Номинальные передаточные числа

1 ряд1,01,251,62,02,53,15
2 ряд1,121,41,82,242,8
1 ряд4,05,06,38,01012,5
2 ряд3,554,55,67,19,011,2

1-й ряд следует предпочитать 2-му Фактические значения передаточных чисел не должны отличаться от номинальных более чем на 2,5% при номинальном меньше 4,5 и на 4% при номинальном больше 4,5

Коэффициент ширины зубчатых колес (отношение ширины зубчатого колеса к межосевому расстоянию) должен соответствовать: 0,100; 0,125; 0,160; 0,200; 0,315; 0,400; 0,500; 0,630; 0,800; 1,0; 1,25

Численные значения ширины зубчатых колес округляются до ближайшего числа из ряда Ra20 по ГОСТу 6636.

При различной ширине сопряженных зубчатых колес значение коэффициента ширины зубчатых колес относится к более узкому из них.

Почему шестерни часто выполняют заодно с валом?

Несмотря на это, в редукторах шестерню часто выполняют заодно с валом и даже при толщине, значительно превышающей указанные нормы. Это объясняется большей жесткостью и прочностью, а также технологичностью вала-шестерни, что в конечном итоге оправдывает ее стоимость.

Поделиться или сохранить к себе: