Вписанные и центральные углы |
Углы, образованные хордами, касательными и секущими |
Доказательства теорем об углах, связанных с окружностью |
- Вписанные и центральные углы
- Теоремы о вписанных и центральных углах
- Теоремы об углах, образованных хордами, касательными и секущими
- Доказательства теорем об углах, связанных с окружностью
- Углы в окружности, центральный и вписанный. Свойства и способы нахождения
- Что такое центральный угол?
- Чем вписанный угол отличается от центрального?
- Чему равен центральный угол
- Как найти вписанный угол
- Где могут встретиться задачи на эту тему? Их виды и способы решения
- Углы, опирающиеся на одну дугу
- Углы, опирающиеся на разные дуги одной окружности
- Задачи, основанные на соотношении дуг
- Центральные и вписанные углы
- Центральный угол и вписанный угол
- Свойства центральных и вписанных углов
- Примеры решения задач
- 🎦 Видео
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Вписанные и центральные углы
Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).
Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).
Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.
Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.
Видео:Вписанные и центральные углы #огэ #огэматематика #математикаСкачать
Теоремы о вписанных и центральных углах
Фигура | Рисунок | Теорема | |||||||||||||||||||||||||||||||||||
Вписанный угол | |||||||||||||||||||||||||||||||||||||
Вписанный угол | Вписанные углы, опирающиеся на одну и ту же дугу равны. | ||||||||||||||||||||||||||||||||||||
Вписанный угол | Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды | ||||||||||||||||||||||||||||||||||||
Вписанный угол | Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды | ||||||||||||||||||||||||||||||||||||
Вписанный угол | Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр | ||||||||||||||||||||||||||||||||||||
Окружность, описанная около прямоугольного треугольника |
Вписанный угол | |||||||||||||||||||||||||||||||||
Окружность, описанная около прямоугольного треугольника | |||||||||||||||||||||||||||||||||
Фигура | Рисунок | Теорема | Формула |
Угол, образованный пересекающимися хордами | |||
Угол, образованный секущими, которые пересекаются вне круга | |||
Угол, образованный касательной и хордой, проходящей через точку касания | |||
Угол, образованный касательной и секущей | |||
Угол, образованный двумя касательными к окружности |
Угол, образованный пересекающимися хордами хордами |
Формула: |
Угол, образованный секущими секущими , которые пересекаются вне круга |
Формула: |
Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами |
Угол, образованный касательной и хордой хордой , проходящей через точку касания |
Формула: |
Угол, образованный касательной и секущей касательной и секущей |
Формула: |
Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами |
Угол, образованный двумя касательными касательными к окружности |
Формулы: |
Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами Видео:ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс АтанасянСкачать Доказательства теорем об углах, связанных с окружностьюТеорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу. Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5). Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана. Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6). В этом случае справедливы равенства и теорема 1 в этом случае доказана. Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7). В этом случае справедливы равенства что и завершает доказательство теоремы 1. Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами. Доказательство . Рассмотрим рисунок 8. Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства что и требовалось доказать. Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла. Доказательство . Рассмотрим рисунок 9. Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства что и требовалось доказать. Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами. Доказательство . Рассмотрим рисунок 10. Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства что и требовалось доказать Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла. Доказательство . Рассмотрим рисунок 11. Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства что и требовалось доказать. Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами. Доказательство . Рассмотрим рисунок 12. Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство Видео:Углы, вписанные в окружность. 9 класс.Скачать Углы в окружности, центральный и вписанный. Свойства и способы нахожденияПланиметрия – это раздел геометрии, изучающий свойства плоских фигур. К ним относятся не только всем известные треугольники, квадраты, прямоугольники, но и прямые и углы. В планиметрии также существуют такие понятия, как углы в окружности: центральный и вписанный. Но что они означают? Видео:Вписанные углы в окружностиСкачать Что такое центральный угол?Для того чтобы понять, что такое центральный угол, нужно дать определение окружности. Окружность – это совокупность всех точек, равноудаленных от данной точки (центра окружности). Очень важно отличать ее от круга. Нужно запомнить, что окружность – это замкнутая линия, а круг – это часть плоскости, ограниченная ею. В окружность может быть вписан многоугольник или угол. Центральный угол – это такой угол, вершина которого совпадает с центром окружности, а стороны пересекают окружность в двух точках. Дуга, которую угол ограничивает точками пересечения, называется дугой, на которую опирается данный угол. Рассмотрим пример №1. На картинке угол AOB – центральный, потому что вершина угла и центр окружности – это одна точка О. Он опирается на дугу AB, не содержащую точку С. Видео:Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |Скачать Чем вписанный угол отличается от центрального?Однако кроме центральных существуют также вписанные углы. В чем же их различие? Так же как и центральный, вписанный в окружность угол опирается на определенную дугу. Но его вершина не совпадает с центром окружности, а лежит на ней. Приведем следующий пример. Угол ACB называется углом, вписанным в окружность с центром в точке О. Точка С принадлежит окружности, то есть лежит на ней. Угол опирается на дугу АВ. Видео:ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать Чему равен центральный уголДля того чтобы успешно справляться с задачами по геометрии, недостаточно уметь различать вписанный и центральный углы. Как правило, для их решения нужно точно знать, как найти центральный угол в окружности, и уметь вычислить его значение в градусах. Итак, центральный угол равен градусной мере дуги, на которую он опирается. На картинке угол АОВ опирается на дугу АВ, равную 66°. Значит, угол АОВ также равен 66°. Таким образом, центральные углы, опирающиеся на равные дуги, равны. На рисунке дуга DC равна дуге AB. Значит, угол АОВ равен углу DOC. Видео:Длина дуги окружности. 9 класс.Скачать Как найти вписанный уголМожет показаться, что угол, вписанный в окружность, равен центральному углу, который опирается на ту же дугу. Однако это грубая ошибка. На самом деле, даже просто посмотрев на чертеж и сравнив эти углы между собой, можно увидеть, что их градусные меры будут иметь разные значения. Так чему же равен вписанный в окружность угол? Градусная мера вписанного угла равна одной второй от дуги, на которую он опирается, или половине центрального угла, если они опираются на одну дугу. Рассмотрим пример. Угол АСВ опирается на дугу, равную 66°. Значит, угол АСВ = 66° : 2 = 33° Рассмотрим некоторые следствия из этой теоремы.
Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать Где могут встретиться задачи на эту тему? Их виды и способы решенияТак как окружность и ее свойства – это один из важнейших разделов геометрии, планиметрии в частности, то вписанный и центральный углы в окружности – это тема, которая широко и подробно изучается в школьном курсе. Задачи, посвященные их свойствам, встречаются в основном государственном экзамене (ОГЭ) и едином государственном экзамене (ЕГЭ). Как правило, для решения этих задач следует найти углы на окружности в градусах. Видео:8 класс. Решаем задачи на центральные и вписанные углы | Часть 1Скачать Углы, опирающиеся на одну дугуЭтот тип задач является, пожалуй, одним из самых легких, так как для его решения нужно знать всего два простых свойства: если оба угла являются вписанными и опираются на одну хорду, они равны, если один из них – центральный, то соответствующий вписанный угол равен его половине. Однако при их решении нужно быть крайне внимательным: иногда бывает сложно заметить это свойство, и ученики при решении таких простейших задач заходят в тупик. Рассмотрим пример. Дана окружность с центром в точке О. Угол АОВ равен 54°. Найти градусную меру угла АСВ. Эта задача решается в одно действие. Единственное, что нужно для того, чтобы найти ответ на нее быстро – заметить, что дуга, на которую опираются оба угла — общая. Увидев это, можно применять уже знакомое свойство. Угол АСВ равен половине угла АОВ. Значит, 1) АОВ = 54° : 2 = 27°. Видео:8 класс, 34 урок, Теорема о вписанном углеСкачать Углы, опирающиеся на разные дуги одной окружностиИногда в условиях задачи напрямую не прописана величина дуги, на которую опирается искомый угол. Для того чтобы ее вычислить, нужно проанализировать величину данных углов и сопоставить их с известными свойствами окружности. В окружности с центром в точке О угол АОС равен 120°, а угол АОВ – 30°. Найдите угол ВАС. Для начала стоит сказать, что возможно решение этой задачи с помощью свойств равнобедренных треугольников, однако для этого потребуется выполнить большее количество математических действий. Поэтому здесь будет приведен разбор решения с помощью свойств центральных и вписанных углов в окружности. Итак, угол АОС опирается на дугу АС и является центральным, значит, дуга АС равна углу АОС. Точно так же угол АОВ опирается на дугу АВ. Зная это и градусную меру всей окружности (360°), можно с легкостью найти величину дуги ВС. ВС = 360° — АС — АВ ВС = 360° — 120° — 30° = 210° Вершина угла САВ, точка А, лежит на окружности. Значит, угол САВ является вписанным и равен половине дуги СВ. Угол САВ = 210° : 2 = 110° Видео:Радиус описанной окружностиСкачать Задачи, основанные на соотношении дугНекоторые задачи вообще не содержат данных о величинах углов, поэтому их нужно искать, исходя только из известных теорем и свойств окружности. Найдите угол, вписанный в окружность, который опирается на хорду, равную радиусу данной окружности. Если мысленно провести линии, соединяющие концы отрезка с центром окружности, то получится треугольник. Рассмотрев его, можно заметить, что эти линии являются радиусами окружности, а значит, все стороны треугольника равны. Известно, что все углы равностороннего треугольника равны 60°. Значит, дуга АВ, содержащая вершину треугольника, равна 60°. Отсюда найдем дугу АВ, на которую опирается искомый угол. АВ = 360° — 60° = 300° Угол АВС = 300° : 2 = 150° В окружности с центром в точке О дуги соотносятся как 3:7. Найдите меньший вписанный угол. Для решения обозначим одну часть за Х, тогда одна дуга равна 3Х, а вторая соответственно 7Х. Зная, что градусная мера окружности равна 360°, составим уравнение. По условию, нужно найти меньший угол. Очевидно, что если величина угла прямо пропорциональна дуге, на которую он опирается, то искомый (меньший) угол соответствует дуге, равной 3Х. Значит, меньший угол равен (36° * 3) : 2 = 108° : 2 = 54° В окружности с центром в точке О угол АОВ равен 60°, а длина меньшей дуги — 50. Вычислите длину большей дуги. Для того чтобы вычислить длину большей дуги, нужно составить пропорцию — как меньшая дуга относится к большей. Для этого вычислим величину обеих дуг в градусах. Меньшая дуга равна углу, который на нее опирается. Ее градусная мера составит 60°. Большая дуга равна разности градусной меры окружности (она равна 360° вне зависимости от остальных данных) и меньшей дуги. Большая дуга равна 360° — 60° = 300°. Так как 300° : 60° = 5, то большая дуга в 5 раз больше меньшей. Большая дуга = 50 * 5 = 250 Итак, конечно, существуют и другие подходы к решению подобных задач, но все они так или иначе основаны на свойствах центральных и вписанных углов, треугольников и окружности. Для того чтобы успешно их решать, необходимо внимательно изучать чертеж и сопоставлять его с данными задачи, а также уметь применять свои теоретические знания на практике. Видео:Решение задач на тему центральные и вписанные углы.Скачать Центральные и вписанные углыО чем эта статья: Видео:Углы в окружности. 16 задание ОГЭ математика 2023 | Молодой РепетиторСкачать Центральный угол и вписанный уголОкружность — замкнутая линия, все точки которой равноудалены от ее центра. Определение центрального угла: Центральный угол — это угол, вершина которого лежит в центре окружности.
На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF Определение вписанного угла: Вписанный угол — это угол, вершина которого лежит на окружности. Вписанный угол равен половине дуги, на которую опирается.
На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать Свойства центральных и вписанных угловУглы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.
Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.
ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.
ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ. Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:
На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла. Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство. Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart! Хорда — отрезок, соединяющий две точки на окружности.
AB * AC = AE * AD
ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.
ㄥBAC + ㄥBDC = 180° Видео:Центральный и вписанный угол в окружности. Урок 1 геометрия 8 классСкачать Примеры решения задачЦентральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно. Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?
Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80° Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.
Мы уже потренировались и знаем, как найти вписанный угол. Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?
СB = ⅕ от 360° = 72° 🎦 ВидеоВПИСАННЫЕ И ЦЕНТРАЛЬНЫЕ УГЛЫ | МАТЕМАТИКА ОГЭ №16 | ОКРУЖНОСТЬСкачать Геометрия. Окружность и углы. Задачи.Скачать Вписанные и описанные окружности. Вебинар | МатематикаСкачать |