Как найти угол через радиус описанной окружности

Теорема синусов

Как найти угол через радиус описанной окружности

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Изогонали угла. Радиус описанной окружности и высота, проведенные из одной вершины треугольника.Скачать

Изогонали угла. Радиус описанной окружности и высота, проведенные из одной вершины треугольника.

Доказательство теоремы синусов

Теорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов.

Нарисуем стандартный треугольник и запишем теорему формулой:

Как найти угол через радиус описанной окружности

Формула теоремы синусов:

Как найти угол через радиус описанной окружности

Докажем теорему с помощью формулы площади треугольника через синус его угла.

Как найти угол через радиус описанной окружности

Из этой формулы мы получаем два соотношения:


    Как найти угол через радиус описанной окружности

Как найти угол через радиус описанной окружности
На b сокращаем, синусы переносим в знаменатели:
Как найти угол через радиус описанной окружности

  • Как найти угол через радиус описанной окружности
    bc sinα = ca sinβ
    Как найти угол через радиус описанной окружности
  • Из этих двух соотношений получаем:

    Как найти угол через радиус описанной окружности

    Теорема синусов для треугольника доказана.

    Эта теорема пригодится, чтобы найти:

    • Стороны треугольника, если даны два угла и одна сторона.
    • Углы треугольника, если даны две стороны и один прилежащий угол.

    Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

    Всё про углы в окружности. Геометрия  | Математика

    Доказательство следствия из теоремы синусов

    У теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.

    Как найти угол через радиус описанной окружности

    Как найти угол через радиус описанной окружности

    где R — радиус описанной около треугольника окружности.

    Так образовались три формулы радиуса описанной окружности:

    Как найти угол через радиус описанной окружности

    Основной смысл следствия из теоремы синусов заключен в этой формуле:

    Как найти угол через радиус описанной окружности

    Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла.

    Для доказательства следствия теоремы синусов рассмотрим три случая.

    1. Угол ∠А = α — острый в треугольнике АВС.

    Как найти угол через радиус описанной окружности

    Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС.

    Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1.

    Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла.

    BA1 = 2R, где R — радиус окружности

    Следовательно: R = α/2 sinα

    Для острого треугольника с описанной окружностью теорема доказана.

    2. Угол ∠А = α — тупой в треугольнике АВС.

    Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°.

    Следовательно, ∠А1 = 180° — α.

    Как найти угол через радиус описанной окружности

    Вспомним свойство вписанного в окружность четырёхугольника:

    Как найти угол через радиус описанной окружности

    Также известно, что sin(180° — α) = sinα.

    В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом:

    α = 2R sin (180° — α) = 2R sinα

    Следовательно: R = α/2 sinα

    Для тупого треугольника с описанной окружностью теорема доказана.

    Часто используемые тупые углы:

    • sin120° = sin(180° — 60°) = sin60° = 3/√2;
    • sin150° = sin(180° — 30°) = sin30° = 1/2;
    • sin135° = sin(180° — 45°) = sin45° = 2/√2.

    3. Угол ∠А = 90°.

    Как найти угол через радиус описанной окружности

    В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.

    Как найти угол через радиус описанной окружности

    Для прямоугольного треугольника с описанной окружностью теорема доказана.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Видео:найти радиус окружности, описанной вокруг треугольникаСкачать

    найти радиус окружности, описанной вокруг треугольника

    Теорема о вписанном в окружность угле

    Из теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно.

    Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее.

    Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.

    Как найти угол через радиус описанной окружности

    ∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC.

    Формула теоремы о вписанном угле:

    Как найти угол через радиус описанной окружности

    Следствие 1 из теоремы о вписанном в окружность угле

    Вписанные углы, опирающиеся на одну дугу, равны.

    Как найти угол через радиус описанной окружности

    ∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB).

    Если мы возьмём точки A1, А2. Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:

    Как найти угол через радиус описанной окружности

    На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности.

    Следствие 2 из теоремы о вписанном в окружность угле

    Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.

    Как найти угол через радиус описанной окружности

    ВС — диаметр описанной окружности, следовательно ∠COB = 180°.

    Как найти угол через радиус описанной окружности

    Следствие 3 из теоремы о вписанном в окружность угле

    Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:

    Как найти угол через радиус описанной окружности

    Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле.

    Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ.

    Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°.

    Следовательно: α + γ = 180°.

    Поэтому: ∠A + ∠C = 180°.

    Следствие 4 из теоремы о вписанном в окружность угле

    Синусы противоположных углов вписанного четырехугольника равны. То есть:

    sinγ = sin(180° — α)

    Так как sin(180° — α) = sinα, то sinγ = sin(180° — α) = sinα

    Видео:Вписанная и описанная окружность - от bezbotvyСкачать

    Вписанная и описанная окружность - от bezbotvy

    Примеры решения задач

    Теорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал.

    Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC.

      Согласно теореме о сумме углов треугольника:

    ∠B = 180° — 45° — 15° = 120°

  • Сторону AC найдем по теореме синусов:
    Как найти угол через радиус описанной окружности
  • Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета.

    В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:

    Как найти угол через радиус описанной окружности

    Как найти угол через радиус описанной окружности

    Значит x = sin (4/5) ≈ 53,1°.

    Ответ: угол составляет примерно 53,1°.

    Видео:Задача 6 №27913 ЕГЭ по математике. Урок 131Скачать

    Задача 6 №27913 ЕГЭ по математике. Урок 131

    Запоминаем

    Обычная теорема: стороны треугольника пропорциональны синусам противолежащих углов.

    >
    Как найти угол через радиус описанной окружности

    Расширенная теорема: в произвольном треугольнике справедливо следующее соотношение:

    Видео:Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математикеСкачать

    Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математике

    Треугольник вписанный в окружность

    Как найти угол через радиус описанной окружности

    Видео:Радиус описанной окружности трапецииСкачать

    Радиус описанной окружности трапеции

    Определение

    Треугольник, вписанный в окружность — это треугольник, который
    находится внутри окружности и соприкасается с ней всеми тремя вершинами.

    На рисунке 1 изображена окружность, описанная около
    треугольника
    и окружность, вписанная в треугольник.

    ВD = FC = AE — диаметры описанной около треугольника окружности.

    O — центр вписанной в треугольник окружности.

    Как найти угол через радиус описанной окружности

    Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

    Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

    Формулы

    Радиус вписанной окружности в треугольник

    r — радиус вписанной окружности.

    1. Радиус вписанной окружности в треугольник,
      если известна площадь и все стороны:

    Радиус вписанной окружности в треугольник,
    если известны площадь и периметр:

    Радиус вписанной окружности в треугольник,
    если известны полупериметр и все стороны:

    Радиус описанной окружности около треугольника

    R — радиус описанной окружности.

    1. Радиус описанной окружности около треугольника,
      если известна одна из сторон и синус противолежащего стороне угла:

    Радиус описанной окружности около треугольника,
    если известны все стороны и площадь:

    Радиус описанной окружности около треугольника,
    если известны все стороны и полупериметр:

    Площадь треугольника

    S — площадь треугольника.

    1. Площадь треугольника вписанного в окружность,
      если известен полупериметр и радиус вписанной окружности:

    Площадь треугольника вписанного в окружность,
    если известен полупериметр:

    Площадь треугольника вписанного в окружность,
    если известен высота и основание:

    Площадь треугольника вписанного в окружность,
    если известна сторона и два прилежащих к ней угла:

    Площадь треугольника вписанного в окружность,
    если известны две стороны и синус угла между ними:

    [ S = fracab cdot sin angle C ]

    Периметр треугольника

    P — периметр треугольника.

    1. Периметр треугольника вписанного в окружность,
      если известны все стороны:

    Периметр треугольника вписанного в окружность,
    если известна площадь и радиус вписанной окружности:

    Периметр треугольника вписанного в окружность,
    если известны две стороны и угол между ними:

    Сторона треугольника

    a — сторона треугольника.

    1. Сторона треугольника вписанного в окружность,
      если известны две стороны и косинус угла между ними:

    Сторона треугольника вписанного в
    окружность, если известна сторона и два угла:

    Средняя линия треугольника

    l — средняя линия треугольника.

    1. Средняя линия треугольника вписанного
      в окружность, если известно основание:

    Средняя линия треугольника вписанного в окружность,
    если известныдве стороны, ни одна из них не является
    основанием, и косинус угламежду ними:

    Высота треугольника

    h — высота треугольника.

    1. Высота треугольника вписанного в окружность,
      если известна площадь и основание:

    Высота треугольника вписанного в окружность,
    если известен сторона и синус угла прилежащего
    к этой стороне, и находящегося напротив высоты:

    [ h = b cdot sin alpha ]

    Высота треугольника вписанного в окружность,
    если известен радиус описанной окружности и
    две стороны, ни одна из которых не является основанием:

    Видео:Как найти радиус описанной окружности (Задача №324618)Скачать

    Как найти радиус описанной окружности (Задача №324618)

    Свойства

    • Центр вписанной в треугольник окружности
      находится на пересечении биссектрис.
    • В треугольник, вписанный в окружность,
      можно вписать окружность, причем только одну.
    • Для треугольника, вписанного в окружность,
      справедлива Теорема Синусов, Теорема Косинусов
      и Теорема Пифагора.
    • Центр описанной около треугольника окружности
      находится на пересечении серединных перпендикуляров.
    • Все вершины треугольника, вписанного
      в окружность, лежат на окружности.
    • Сумма всех углов треугольника — 180 градусов.
    • Площадь треугольника вокруг которого описана окружность, и
      треугольника, в который вписана окружность, можно найти по
      формуле Герона.

    Видео:Задание 24 ОГЭ по математике #7Скачать

    Задание 24 ОГЭ по математике #7

    Доказательство

    Около любого треугольника, можно
    описать окружность притом только одну.

    Как найти угол через радиус описанной окружности

    окружность и треугольник,
    которые изображены на рисунке 2.

    окружность описана
    около треугольника.

    1. Проведем серединные
      перпендикуляры — HO, FO, EO.
    2. O — точка пересечения серединных
      перпендикуляров равноудалена от
      всех вершин треугольника.
    3. Центр окружности — точка пересечения
      серединных перпендикуляров — около
      треугольника описана окружность — O,
      от центра окружности к вершинам можно
      провести равные отрезки — радиусы — OB, OA, OC.

    окружность описана около треугольника,
    что и требовалось доказать.

    Подводя итог, можно сказать, что треугольник,
    вписанный в окружность
    — это треугольник,
    в котором все серединные перпендикуляры
    пересекаются в одной точке, и эта точка
    равноудалена от всех вершин треугольника.

    Видео:Задача 6 №27921 ЕГЭ по математике. Урок 138Скачать

    Задача 6 №27921 ЕГЭ по математике. Урок 138

    Радиус описанной около треугольника окружности

    Радиус описанной около треугольника окружности можно найти по одной из двух общих формул.

    Кроме того, для правильного и прямоугольного треугольников существуют дополнительные формулы.

    Радиус описанной около произвольного треугольника окружности

    Как найти угол через радиус описанной окружности

    Как найти угол через радиус описанной окружности

    То есть радиус описанной окружности равен отношению длины стороны треугольника к удвоенному синусу противолежащего этой стороне угла.

    В общем виде эту формулу записывают так:

    Как найти угол через радиус описанной окружности

    Как найти угол через радиус описанной окружности

    Как найти угол через радиус описанной окружности

    То есть чтобы найти радиус описанной около треугольника окружности, надо произведения длин сторон треугольника разделить на четыре площади треугольника.

    Если площадь треугольника находить по формуле Герона

    Как найти угол через радиус описанной окружности

    где p — полупериметр,

    Как найти угол через радиус описанной окружности

    то получим формулу радиуса описанной около треугольника окружности через длины сторон:

    Как найти угол через радиус описанной окружности

    Как найти угол через радиус описанной окружности

    Обе эти формулы можно применить к треугольнику любого вида. Следует только учесть положение центра.

    Центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы.

    Центр описанной около тупоугольного треугольника окружности лежит вне треугольника, напротив тупого угла.

    Радиус окружности, описанной около прямоугольного треугольника

    Как найти угол через радиус описанной окружностиФормула:

    Как найти угол через радиус описанной окружности

    То есть в прямоугольном треугольнике радиус описанной окружности равен половине гипотенузы.

    Обычно гипотенузу обозначают через c (AB=c) и формулу записывают так:

    Как найти угол через радиус описанной окружности

    Радиус окружности, описанной около правильного треугольника

    Как найти угол через радиус описанной окружности

    Как найти угол через радиус описанной окружности

    Если без иррациональности в знаменателе, то

    Как найти угол через радиус описанной окружности

    В равностороннем треугольнике радиус описанной окружности в два раза больше радиуса вписанной окружности:

    📽️ Видео

    ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэСкачать

    ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэ

    Как найти радиус описанной окружности? / ПРОФИЛЬ /#541815Скачать

    Как найти радиус описанной окружности? / ПРОФИЛЬ /#541815

    Окружность вписана в равносторонний треугольник, найти радиусСкачать

    Окружность вписана в равносторонний треугольник, найти радиус

    Нафиг теорему синусов 3 задание проф. ЕГЭ по математике (часть II)Скачать

    Нафиг теорему синусов 3 задание проф. ЕГЭ по математике (часть II)

    Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

    Вписанная и описанная окружности | Лайфхак для запоминания

    Как найти радиус описанной окружности?Скачать

    Как найти радиус описанной окружности?

    Вписанные и описанные окружности. Вебинар | МатематикаСкачать

    Вписанные и описанные окружности. Вебинар | Математика

    Шестнадцатое задание ОГЭ по математике (1) #огэ #огэ2023 #огэматематика #огэпоматематике #математикаСкачать

    Шестнадцатое задание ОГЭ по математике (1) #огэ #огэ2023 #огэматематика #огэпоматематике #математика

    Радиус вписанной окружности, формулу через площадь и полупериметрСкачать

    Радиус вписанной окружности, формулу через площадь и полупериметр
    Поделиться или сохранить к себе: