Как найти центр треугольника разностороннего

Центр треугольника

Треугольник — наиболее распространенная форма деталей в сферах машиностроения и строительства. Точка пересечения 3-х медиан считается центром треугольника. На эту точку приходится также центр тяжести и центр симметрии предметов треугольной формы. При разработке дизайнерских, инженерных проектов очень важно точно рассчитать центр тяжести элементов металлической или бетонной конструкции.

Существует несколько понятий центра для треугольника.

Инцентр — точка пересечения его биссектрис. Это — центр описанной около треугольника окружности.

Ортоцентр — точка пересечения его высот.

Центр тяжести,центр масс или центроид (обозн. М) — точка пересечения медиан треугольника.

Рассмотрим треугольник. Определим середины его сторон и соединим их с противолежащими углами. Точка пересечения медиан и будет центром тяжести тр-ка. Медиана делится этой точкой в пропорции 2:1 , (считая от вершины тр-ка).

Содержание
  1. Как найти центр треугольника
  2. Окружность, описанная около треугольника. Треугольник, вписанный в окружность. Теорема синусов
  3. Серединный перпендикуляр к отрезку
  4. Окружность, описанная около треугольника
  5. Свойства описанной около треугольника окружности. Теорема синусов
  6. Доказательства теорем о свойствах описанной около треугольника окружности
  7. Треугольник. Формулы и свойства треугольников.
  8. Типы треугольников
  9. По величине углов
  10. По числу равных сторон
  11. Вершины углы и стороны треугольника
  12. Свойства углов и сторон треугольника
  13. Теорема синусов
  14. Теорема косинусов
  15. Теорема о проекциях
  16. Формулы для вычисления длин сторон треугольника
  17. Медианы треугольника
  18. Свойства медиан треугольника:
  19. Формулы медиан треугольника
  20. Биссектрисы треугольника
  21. Свойства биссектрис треугольника:
  22. Формулы биссектрис треугольника
  23. Высоты треугольника
  24. Свойства высот треугольника
  25. Формулы высот треугольника
  26. Окружность вписанная в треугольник
  27. Свойства окружности вписанной в треугольник
  28. Формулы радиуса окружности вписанной в треугольник
  29. Окружность описанная вокруг треугольника
  30. Свойства окружности описанной вокруг треугольника
  31. Формулы радиуса окружности описанной вокруг треугольника
  32. Связь между вписанной и описанной окружностями треугольника
  33. Средняя линия треугольника
  34. Свойства средней линии треугольника
  35. Периметр треугольника
  36. Формулы площади треугольника
  37. Формула Герона
  38. Равенство треугольников
  39. Признаки равенства треугольников
  40. Первый признак равенства треугольников — по двум сторонам и углу между ними
  41. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  42. Третий признак равенства треугольников — по трем сторонам
  43. Подобие треугольников
  44. Признаки подобия треугольников
  45. Первый признак подобия треугольников
  46. Второй признак подобия треугольников
  47. Третий признак подобия треугольников

Видео:Центр тяжести треугольникаСкачать

Центр тяжести треугольника

Как найти центр треугольника

Если известны координаты его вершин, найдем сумму трех значений координат «х» и трех значений координат «у». Поделим каждую сумму на 3, получим среднее значение сумм координат «х» и «у», что и будет координатами центра тяжести.

Центром равностороннего треугольника является точка пересечения высот, биссектрис и медиан.

Центр равностороннего треугольника является также центром вписанной и описанной окружности.

Центроид расположен на отрезке, соединяющем ортоцентр и центр описанной окружности. Центроид делит отрезок 2:1.

Быстро найти центр треугольника G можно с помощью онлайн калькулятора. Для этого:

  • ввести в поле калькулятора координаты вершин треугольника;
  • нажать кнопку Вычислить. Калькулятор вычислит значение центра треугольника G.

Видео:координаты центра тяжести треугольникаСкачать

координаты центра тяжести треугольника

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов

Как найти центр треугольника разностороннегоСерединный перпендикуляр к отрезку
Как найти центр треугольника разностороннегоОкружность описанная около треугольника
Как найти центр треугольника разностороннегоСвойства описанной около треугольника окружности. Теорема синусов
Как найти центр треугольника разностороннегоДоказательства теорем о свойствах описанной около треугольника окружности

Как найти центр треугольника разностороннего

Видео:Медиана, высота и биссектриса треугольника. Центроид, инцентр, ортоцентр. Геометрия 7 класс.Скачать

Медиана, высота и биссектриса треугольника. Центроид, инцентр, ортоцентр. Геометрия 7 класс.

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Как найти центр треугольника разностороннего

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Как найти центр треугольника разностороннего

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Как найти центр треугольника разностороннего

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Как найти центр треугольника разностороннего

Как найти центр треугольника разностороннего

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Как найти центр треугольника разностороннего

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Как найти центр треугольника разностороннего

Как найти центр треугольника разностороннего

Полученное противоречие и завершает доказательство теоремы 2

Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Как найти центр треугольника разностороннего

Видео:Построение медианы в треугольникеСкачать

Построение медианы в треугольнике

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Как найти центр треугольника разностороннего,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

Как найти центр треугольника разностороннего

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Как найти центр треугольника разностороннегоВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаКак найти центр треугольника разностороннегоОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиКак найти центр треугольника разностороннегоЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиКак найти центр треугольника разностороннегоЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовКак найти центр треугольника разностороннего
Площадь треугольникаКак найти центр треугольника разностороннего
Радиус описанной окружностиКак найти центр треугольника разностороннего
Серединные перпендикуляры к сторонам треугольника
Как найти центр треугольника разностороннего

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольникаКак найти центр треугольника разностороннего

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружностиКак найти центр треугольника разностороннего

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружностиКак найти центр треугольника разностороннего

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружностиКак найти центр треугольника разностороннего

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусовКак найти центр треугольника разностороннего

Для любого треугольника справедливы равенства (теорема синусов):

Как найти центр треугольника разностороннего,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаКак найти центр треугольника разностороннего

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиКак найти центр треугольника разностороннего

Для любого треугольника справедливо равенство:

Как найти центр треугольника разностороннего

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Видео:Как найти центр круга с помощью подручных средств? ЛЕГКО.Скачать

Как найти центр круга с помощью подручных средств? ЛЕГКО.

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Как найти центр треугольника разностороннего

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Как найти центр треугольника разностороннего

Как найти центр треугольника разностороннего.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

l = 2Rsin φ .(1)

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Как найти центр треугольника разностороннего

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

Видео:Найдите центр тяжестиСкачать

Найдите центр тяжести

Треугольник. Формулы и свойства треугольников.

Видео:Определение центра тяжести сложной фигуры. СопроматСкачать

Определение центра тяжести сложной фигуры. Сопромат

Типы треугольников

По величине углов

Как найти центр треугольника разностороннего

Как найти центр треугольника разностороннего

Как найти центр треугольника разностороннего

По числу равных сторон

Как найти центр треугольника разностороннего

Как найти центр треугольника разностороннего

Как найти центр треугольника разностороннего

Видео:Центр тяжестиСкачать

Центр тяжести

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Как найти центр треугольника разностороннего

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c= 2R
sin αsin βsin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Видео:Центр тяжести. ЭкспериментСкачать

Центр тяжести. Эксперимент

Медианы треугольника

Как найти центр треугольника разностороннего

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Видео:Центр кругаСкачать

Центр круга

Биссектрисы треугольника

Как найти центр треугольника разностороннего

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Видео:Как найти центр круга в мастерской (4 способа)Скачать

Как найти центр круга в мастерской (4 способа)

Высоты треугольника

Как найти центр треугольника разностороннего

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Видео:Найти центр кругаСкачать

Найти центр круга

Окружность вписанная в треугольник

Как найти центр треугольника разностороннего

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Видео:8. Медиана треугольника и её свойства.Скачать

8. Медиана треугольника и её свойства.

Окружность описанная вокруг треугольника

Как найти центр треугольника разностороннего

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Связь между вписанной и описанной окружностями треугольника

Видео:Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)

Средняя линия треугольника

Свойства средней линии треугольника

Как найти центр треугольника разностороннего

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Видео:97 Медианы и центр тяжести треугольникаСкачать

97 Медианы и центр тяжести треугольника

Периметр треугольника

Как найти центр треугольника разностороннего

Периметр треугольника ∆ ABC равен сумме длин его сторон

Видео:Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

Формулы площади треугольника

Как найти центр треугольника разностороннего

Формула Герона

S =a · b · с
4R

Видео:Центры тяжести прямоугольных треугольниковСкачать

Центры тяжести прямоугольных треугольников

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Видео:Как найти центр тяжести любой фигуры?Скачать

Как найти центр тяжести любой фигуры?

Подобие треугольников

Как найти центр треугольника разностороннего

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Поделиться или сохранить к себе: